畢業(yè)論文 分析實現(xiàn)25g hz pll 鎖定檢測電路.rar
畢業(yè)論文 分析實現(xiàn)25g hz pll 鎖定檢測電路,目 錄摘要iabstractii1引言12 2.5g hz pll鎖定檢測電路工作原理分析22.1 鎖相環(huán)結(jié)構(gòu)簡介22.2 鎖相環(huán)的作用簡介22.3 鎖定檢測33 2.5g hz pll鎖定檢測電路總體設(shè)計方案53.1 概述53.2 設(shè)計目標(biāo)63.3 頂層設(shè)計方案73.4 驗證與測試114 2.5g hz pll鎖定檢...
該文檔為壓縮文件,包含的文件列表如下:
內(nèi)容介紹
原文檔由會員 ljjwl8321 發(fā)布
目 錄
摘要 I
ABSTRACT II
1引言 1
2 2.5G HZ PLL鎖定檢測電路工作原理分析 2
2.1 鎖相環(huán)結(jié)構(gòu)簡介 2
2.2 鎖相環(huán)的作用簡介 2
2.3 鎖定檢測 3
3 2.5G HZ PLL鎖定檢測電路總體設(shè)計方案 5
3.1 概述 5
3.2 設(shè)計目標(biāo) 6
3.3 頂層設(shè)計方案 7
3.4 驗證與測試 11
4 2.5G HZ PLL鎖定檢測電路反向提取分析 12
4.1 鎖定檢測電路外部引腳 12
4.2 鎖定檢測電路內(nèi)部結(jié)構(gòu) 13
4.3 鎖定檢測電路的實現(xiàn) 15
4.4 反向提取的鎖定檢測電路圖 16
5 2.5GHZ PLL鎖定檢測電路SMIC0.18工藝下重新設(shè)計 17
5.1 反相器設(shè)計 17
5.2 D觸發(fā)器設(shè)計 18
5.3 計數(shù)器設(shè)計 18
5.4 十八輸入或非門設(shè)計 19
5.5 與非門設(shè)計 20
5.6 時鐘設(shè)計 21
5.7 鎖定檢測電路設(shè)計小結(jié) 21
6 2.5G HZ PLL 鎖定檢測電路HSPICE 下晶體管級仿真 22
6.1 觸發(fā)器模塊仿真測試 22
6.2 異或門仿真測試 23
6.3 十八輸入或非門仿真測試 24
6.4 與非門仿真測試 25
6.5 鎖定檢測電路整體仿真測試 26
7 2.5G HZ PLL 鎖定檢測電路VERILOGHDL 語言描述 30
7.1 基本模塊的描述 30
7.2 鎖定檢測電路的整體描述 32
8 結(jié)論 33
致 謝 84
參考文獻(xiàn) 84
附錄:鎖定檢測電路的VERILOG硬件語言描述 84
摘 要
在集成電路設(shè)計中,需要使芯片上內(nèi)部時鐘和外部時鐘同步,希望在外部時鐘輸入的高頻率下使用芯片的內(nèi)部時鐘?;谝陨蟽牲c,鎖相環(huán)常常用于產(chǎn)生芯片上的內(nèi)時鐘。但是隨著處理器頻率的提高,傳統(tǒng)的數(shù)字鎖相環(huán)已經(jīng)不能滿足要求。在本文中,我們將展現(xiàn)一個新的鎖相環(huán)鎖定檢測方法。鎖定檢測的功能是檢測鎖相環(huán)是否達(dá)到鎖定。2.5G Hz PLL 鎖定檢測電路分析實現(xiàn),就是要完成鎖定檢測電路的正向總體設(shè)計方案,鎖定檢測電路的反向提取,再在反向提取電路的基礎(chǔ)上在SMIC0.18 um 工藝下進(jìn)行重新設(shè)計,并完成HSPICE下的晶體管級仿真。2.5G Hz PLL 鎖定檢測電路分析實現(xiàn)的難點與重點是反向電路的提取和SMIC0.18 工藝下的重新設(shè)計。
本文所討論的鎖相環(huán)能夠鎖定更高頻率的時鐘。該鎖定檢測電路采用比較成熟的SMIC0.18 um工藝。鎖相環(huán)的壓控震蕩器的輸出頻率可以高達(dá)2.5GHZ。另外,該鎖相環(huán)能夠鎖定高達(dá)到2.5GHZ 的輸出頻率。我們采用模擬電路來代替以往的數(shù)字的鎖定檢測電路。在SMIC0.18 um工藝下,采用本文所討論的鎖定檢測電路而設(shè)計的鎖相環(huán)相對其他的鎖相環(huán)而言,具有更大的優(yōu)越性。
關(guān)鍵詞:鎖相環(huán) 鎖定檢測 SMIC0.18um工藝 集成電路
Abstract
In integrated circuit design,we need to make the internal clock and the exterior clock of the chip synchronous, we also hope to use the internal clock of the chip under the high frequency clock of the exterior .According to the above , Phase-locked loops (PLLs) are usually used to create inside clock of the chip .But along with the exaltation of the processor frequency, the traditional digital PLL has already can't satisfy the request. In this paper, a new method of PLL lock detector will be presented. The function of the PLL lock detector is to test PLL whether attain to target or not. The analysis and realization of the 2.5 GHz PLL lock detector is to complete total design project, to complete the anti- to distill of circuit, base on the anti- to distill of the circuit and carry on re- designing in the process of SMIC0.18um, and complete the HSPICE simulation of the transistor class .The difficulty and importance of analysis and realization of circuit of 2.5 GHz PLL lock detector is the anti- to distill of the circuit and re-design under the process of SMIC0.18um.
The PLL this text discussed can target the clock which has a higher frequency. the lock detector circuit adoption the process of SMIC0.18um which is more mature now. The output of the VCO can be up to the 2.5 GHz. Moreover, the lock detector circuit is able to lock to form a 2.5 GHz output signal .We adoption the analog circuit instead of digital lock detector circuit. A PLL based on this type of lock detector demonstrated superior performance over other PLLs in this SMIC0.18um process.
Key Words: PLL,lock detector,SMIC0.18um, integrated circuit
摘要 I
ABSTRACT II
1引言 1
2 2.5G HZ PLL鎖定檢測電路工作原理分析 2
2.1 鎖相環(huán)結(jié)構(gòu)簡介 2
2.2 鎖相環(huán)的作用簡介 2
2.3 鎖定檢測 3
3 2.5G HZ PLL鎖定檢測電路總體設(shè)計方案 5
3.1 概述 5
3.2 設(shè)計目標(biāo) 6
3.3 頂層設(shè)計方案 7
3.4 驗證與測試 11
4 2.5G HZ PLL鎖定檢測電路反向提取分析 12
4.1 鎖定檢測電路外部引腳 12
4.2 鎖定檢測電路內(nèi)部結(jié)構(gòu) 13
4.3 鎖定檢測電路的實現(xiàn) 15
4.4 反向提取的鎖定檢測電路圖 16
5 2.5GHZ PLL鎖定檢測電路SMIC0.18工藝下重新設(shè)計 17
5.1 反相器設(shè)計 17
5.2 D觸發(fā)器設(shè)計 18
5.3 計數(shù)器設(shè)計 18
5.4 十八輸入或非門設(shè)計 19
5.5 與非門設(shè)計 20
5.6 時鐘設(shè)計 21
5.7 鎖定檢測電路設(shè)計小結(jié) 21
6 2.5G HZ PLL 鎖定檢測電路HSPICE 下晶體管級仿真 22
6.1 觸發(fā)器模塊仿真測試 22
6.2 異或門仿真測試 23
6.3 十八輸入或非門仿真測試 24
6.4 與非門仿真測試 25
6.5 鎖定檢測電路整體仿真測試 26
7 2.5G HZ PLL 鎖定檢測電路VERILOGHDL 語言描述 30
7.1 基本模塊的描述 30
7.2 鎖定檢測電路的整體描述 32
8 結(jié)論 33
致 謝 84
參考文獻(xiàn) 84
附錄:鎖定檢測電路的VERILOG硬件語言描述 84
摘 要
在集成電路設(shè)計中,需要使芯片上內(nèi)部時鐘和外部時鐘同步,希望在外部時鐘輸入的高頻率下使用芯片的內(nèi)部時鐘?;谝陨蟽牲c,鎖相環(huán)常常用于產(chǎn)生芯片上的內(nèi)時鐘。但是隨著處理器頻率的提高,傳統(tǒng)的數(shù)字鎖相環(huán)已經(jīng)不能滿足要求。在本文中,我們將展現(xiàn)一個新的鎖相環(huán)鎖定檢測方法。鎖定檢測的功能是檢測鎖相環(huán)是否達(dá)到鎖定。2.5G Hz PLL 鎖定檢測電路分析實現(xiàn),就是要完成鎖定檢測電路的正向總體設(shè)計方案,鎖定檢測電路的反向提取,再在反向提取電路的基礎(chǔ)上在SMIC0.18 um 工藝下進(jìn)行重新設(shè)計,并完成HSPICE下的晶體管級仿真。2.5G Hz PLL 鎖定檢測電路分析實現(xiàn)的難點與重點是反向電路的提取和SMIC0.18 工藝下的重新設(shè)計。
本文所討論的鎖相環(huán)能夠鎖定更高頻率的時鐘。該鎖定檢測電路采用比較成熟的SMIC0.18 um工藝。鎖相環(huán)的壓控震蕩器的輸出頻率可以高達(dá)2.5GHZ。另外,該鎖相環(huán)能夠鎖定高達(dá)到2.5GHZ 的輸出頻率。我們采用模擬電路來代替以往的數(shù)字的鎖定檢測電路。在SMIC0.18 um工藝下,采用本文所討論的鎖定檢測電路而設(shè)計的鎖相環(huán)相對其他的鎖相環(huán)而言,具有更大的優(yōu)越性。
關(guān)鍵詞:鎖相環(huán) 鎖定檢測 SMIC0.18um工藝 集成電路
Abstract
In integrated circuit design,we need to make the internal clock and the exterior clock of the chip synchronous, we also hope to use the internal clock of the chip under the high frequency clock of the exterior .According to the above , Phase-locked loops (PLLs) are usually used to create inside clock of the chip .But along with the exaltation of the processor frequency, the traditional digital PLL has already can't satisfy the request. In this paper, a new method of PLL lock detector will be presented. The function of the PLL lock detector is to test PLL whether attain to target or not. The analysis and realization of the 2.5 GHz PLL lock detector is to complete total design project, to complete the anti- to distill of circuit, base on the anti- to distill of the circuit and carry on re- designing in the process of SMIC0.18um, and complete the HSPICE simulation of the transistor class .The difficulty and importance of analysis and realization of circuit of 2.5 GHz PLL lock detector is the anti- to distill of the circuit and re-design under the process of SMIC0.18um.
The PLL this text discussed can target the clock which has a higher frequency. the lock detector circuit adoption the process of SMIC0.18um which is more mature now. The output of the VCO can be up to the 2.5 GHz. Moreover, the lock detector circuit is able to lock to form a 2.5 GHz output signal .We adoption the analog circuit instead of digital lock detector circuit. A PLL based on this type of lock detector demonstrated superior performance over other PLLs in this SMIC0.18um process.
Key Words: PLL,lock detector,SMIC0.18um, integrated circuit