斷路器機構系統(tǒng)動力學特性.rar
斷路器機構系統(tǒng)動力學特性,摘要低壓斷路器常被作為低壓配電支路或終端的開關使用。長期以來傳統(tǒng)低壓斷路器產(chǎn)品的設計研發(fā)是一個憑借經(jīng)驗的大循環(huán)過程,不僅難以提高產(chǎn)品質(zhì)量,而且耗費大量的時間和金錢。本課題針對cw1-3200型低壓框架式斷路器機構系統(tǒng)實際工作過程中存在機構運動死點、碰撞類型復雜以及燃弧現(xiàn)象嚴重等問題,在實驗數(shù)據(jù)的基礎上運用多體系統(tǒng)動力學...
該文檔為壓縮文件,包含的文件列表如下:
內(nèi)容介紹
原文檔由會員 違規(guī)屏蔽12 發(fā)布
摘 要
低壓斷路器常被作為低壓配電支路或終端的開關使用。長期以來傳統(tǒng)低壓斷路器產(chǎn)品的設計研發(fā)是一個憑借經(jīng)驗的大循環(huán)過程,不僅難以提高產(chǎn)品質(zhì)量,而且耗費大量的時間和金錢。
本課題針對CW1-3200型低壓框架式斷路器機構系統(tǒng)實際工作過程中存在機構運動死點、碰撞類型復雜以及燃弧現(xiàn)象嚴重等問題,在實驗數(shù)據(jù)的基礎上運用多體系統(tǒng)動力學仿真分析軟件ADAMS研究該機構系統(tǒng)的動力學特性和碰撞問題,通過對斷路器動力系統(tǒng)的優(yōu)化分析得到滿足條件的最優(yōu)值模型。
本論文主要研究內(nèi)容是:
1. 采用UG與ADAMS軟件完成對CW1-3200型低壓框架式斷路器機構系統(tǒng)的實體造型與動力學模型建立。
2. 通過有限元軟件Altair HyperMesh與ABAQUS完成有限元建模,計算輸出ADAMS/Flex柔性分析所需的模態(tài)中性文件MNF (Modal Neutral File),運用ADAMS軟件對斷路器機構系統(tǒng)進行多剛體與柔性仿真分析,獲得了斷路器機構系統(tǒng)的運動特性。剛、柔性對比分析結果表明基于柔性的動力學特性分析更趨近于理論與實際。
3. 在測試方案確定的基礎上運用高靈敏度傳感器完成對斷路器機構系統(tǒng)的實驗研究,并對仿真與實驗數(shù)據(jù)進行對比分析,運用實驗測試驗證了仿真分析結果的正確性。
4. 利用ADAMS軟件的Optimization優(yōu)化分析模塊,以動觸頭轉(zhuǎn)動角速度為優(yōu)化目標函數(shù),對動力系統(tǒng)進行設計研究和優(yōu)化設計分析。優(yōu)化后模型的動觸頭合閘平均角速度提高了15.6%,該模型可以為本產(chǎn)品的改進及新產(chǎn)品的研發(fā)提供技術支持,同時合閘速度的提高也可以更好的避免觸頭間的燃弧現(xiàn)象。
基于實驗與分析數(shù)據(jù)對斷路器機構系統(tǒng)的動態(tài)仿真分析與優(yōu)化設計,為以后產(chǎn)品的改進提供理論和實踐上的支持?;趦?yōu)化分析的產(chǎn)品工作結果表明,該研究方法達到了提高產(chǎn)品安全性、可靠性以及使用壽命的目的。
關鍵詞 斷路器;動力學特性分析;實驗驗證;優(yōu)化設計
Abstract
Low-voltage circuit breakers are often used as low-voltage power distribution branches or terminal switches. Traditional design and development process of low-voltage circuit breakers by virtue of experience is a big cycle. Not only it is difficult to improve production quality, but also a lot of time and money is spent.
The ACB system has dead bodies, complex collision types, and serious arc phenomenon during practical movement. To solve these problems, ADAMS software was used to calculate and analyze the dynamics characteristics and contact problems based on experimental data, and the optimum value model of meeting specified conditions was obtained by optimizing the power system.
The main contents of this thesis:
1. UG and ADAMS software were used to complete CW1-3200 Low Voltage ACB solid modeling and dynamics modeling.
2. Finite element model was established by Altair HyperMesh and ABAQUS software, and MNF (Modal Neutral File) was calculated and outputted, which was required by ADAMS/Flex. ACB system was rigid and flex simulated and analyzed by ADAMS software, and motion characteristics of body system were obtained. The results showed that dynamics simulation analysis based on flex bodies was more close to theory and reality.
3. The appropriate measurement methods and high sensitivity sensors were adopted to complete the experimental study of ACB, and experimental data was compared with simulation data. The results verified the correctness of simulation data.
4. ADAMS/Optimization was adopted to optimize the power system of ACB. The rotational angular velocity of the moving contact head was as the objective function, design study and optimization of power system were completed. Closing angular velocity of optimized model increased by 15.6%. The model provided technical support in the production improvement and new production development, meanwhile, the arc was avoided.
The dynamics simulation and optimization of ACB system, which were based on experimental and simulation analysis data, provided theoretical and practical support in future production improvement. The actual work results of improved production showed that the research method not only could improve safety and reliability of ACB, but heightened service life.
Key words ACB, dynamics analysis, experimental verification, optimization
目 錄
摘要 I
Abstract II
第1章 緒論 1
1.1 課題研究背景及意義 1
1.1.1 研究背景 1
1.1.2 研究意義 2
1.2 課題研究現(xiàn)狀及發(fā)展趨勢 3
1.2.1 研究現(xiàn)狀 3
1.2.2 發(fā)展趨勢 4
1.3 課題研究內(nèi)容及章節(jié)安排 5
1.3.1 主要研究內(nèi)容 5
1.3.2 章節(jié)安排 6
1.4 本章小結 7
第2章 多體系統(tǒng)動力學建模及求解 8
2.1 引言 8
2.2 多剛體系統(tǒng)動力學建模 8
2.3 多柔體系統(tǒng)動力學建模 10
2.3.1 柔性體標記點運動分析 10
2.3.2 外載荷 11
2.3.3 多柔體動力學方程 13
2.4 多體系統(tǒng)動力學方程求解 14
2.4.1 非線性代數(shù)方程組求解 14
2.4.2 微分代數(shù)方程組求解 14
2.5 接觸碰撞問題求解 16
2.6 本章小結 20
第3章 斷路器機構系統(tǒng)剛?cè)岱抡娣治?21
3.1 斷路器機構系統(tǒng)工作原理 21
3.1.1 合閘過程 21
3.1.2 分閘過程 23
3.2 斷路器機構系統(tǒng)動力學模型建立 24
3.2.1 斷路器機構系統(tǒng)實體建模 24
3.2.2 虛擬樣機模型建立 25
3.3 斷路器機構系統(tǒng)多剛體仿真分析 26
3.3.1 裝配分析 26
3.3.2 靜平衡分析 27
3.3.3 運動學分析 27
3.3.4 動力學分析 32
3.4 斷路器機構系統(tǒng)柔性仿真分析 37
3.4.1 劃分有限元網(wǎng)格 37
3.4.2 生成MNF文件 38
3.4.3 柔性仿真分析 40
3.5 本章小結 43
第4..
低壓斷路器常被作為低壓配電支路或終端的開關使用。長期以來傳統(tǒng)低壓斷路器產(chǎn)品的設計研發(fā)是一個憑借經(jīng)驗的大循環(huán)過程,不僅難以提高產(chǎn)品質(zhì)量,而且耗費大量的時間和金錢。
本課題針對CW1-3200型低壓框架式斷路器機構系統(tǒng)實際工作過程中存在機構運動死點、碰撞類型復雜以及燃弧現(xiàn)象嚴重等問題,在實驗數(shù)據(jù)的基礎上運用多體系統(tǒng)動力學仿真分析軟件ADAMS研究該機構系統(tǒng)的動力學特性和碰撞問題,通過對斷路器動力系統(tǒng)的優(yōu)化分析得到滿足條件的最優(yōu)值模型。
本論文主要研究內(nèi)容是:
1. 采用UG與ADAMS軟件完成對CW1-3200型低壓框架式斷路器機構系統(tǒng)的實體造型與動力學模型建立。
2. 通過有限元軟件Altair HyperMesh與ABAQUS完成有限元建模,計算輸出ADAMS/Flex柔性分析所需的模態(tài)中性文件MNF (Modal Neutral File),運用ADAMS軟件對斷路器機構系統(tǒng)進行多剛體與柔性仿真分析,獲得了斷路器機構系統(tǒng)的運動特性。剛、柔性對比分析結果表明基于柔性的動力學特性分析更趨近于理論與實際。
3. 在測試方案確定的基礎上運用高靈敏度傳感器完成對斷路器機構系統(tǒng)的實驗研究,并對仿真與實驗數(shù)據(jù)進行對比分析,運用實驗測試驗證了仿真分析結果的正確性。
4. 利用ADAMS軟件的Optimization優(yōu)化分析模塊,以動觸頭轉(zhuǎn)動角速度為優(yōu)化目標函數(shù),對動力系統(tǒng)進行設計研究和優(yōu)化設計分析。優(yōu)化后模型的動觸頭合閘平均角速度提高了15.6%,該模型可以為本產(chǎn)品的改進及新產(chǎn)品的研發(fā)提供技術支持,同時合閘速度的提高也可以更好的避免觸頭間的燃弧現(xiàn)象。
基于實驗與分析數(shù)據(jù)對斷路器機構系統(tǒng)的動態(tài)仿真分析與優(yōu)化設計,為以后產(chǎn)品的改進提供理論和實踐上的支持?;趦?yōu)化分析的產(chǎn)品工作結果表明,該研究方法達到了提高產(chǎn)品安全性、可靠性以及使用壽命的目的。
關鍵詞 斷路器;動力學特性分析;實驗驗證;優(yōu)化設計
Abstract
Low-voltage circuit breakers are often used as low-voltage power distribution branches or terminal switches. Traditional design and development process of low-voltage circuit breakers by virtue of experience is a big cycle. Not only it is difficult to improve production quality, but also a lot of time and money is spent.
The ACB system has dead bodies, complex collision types, and serious arc phenomenon during practical movement. To solve these problems, ADAMS software was used to calculate and analyze the dynamics characteristics and contact problems based on experimental data, and the optimum value model of meeting specified conditions was obtained by optimizing the power system.
The main contents of this thesis:
1. UG and ADAMS software were used to complete CW1-3200 Low Voltage ACB solid modeling and dynamics modeling.
2. Finite element model was established by Altair HyperMesh and ABAQUS software, and MNF (Modal Neutral File) was calculated and outputted, which was required by ADAMS/Flex. ACB system was rigid and flex simulated and analyzed by ADAMS software, and motion characteristics of body system were obtained. The results showed that dynamics simulation analysis based on flex bodies was more close to theory and reality.
3. The appropriate measurement methods and high sensitivity sensors were adopted to complete the experimental study of ACB, and experimental data was compared with simulation data. The results verified the correctness of simulation data.
4. ADAMS/Optimization was adopted to optimize the power system of ACB. The rotational angular velocity of the moving contact head was as the objective function, design study and optimization of power system were completed. Closing angular velocity of optimized model increased by 15.6%. The model provided technical support in the production improvement and new production development, meanwhile, the arc was avoided.
The dynamics simulation and optimization of ACB system, which were based on experimental and simulation analysis data, provided theoretical and practical support in future production improvement. The actual work results of improved production showed that the research method not only could improve safety and reliability of ACB, but heightened service life.
Key words ACB, dynamics analysis, experimental verification, optimization
目 錄
摘要 I
Abstract II
第1章 緒論 1
1.1 課題研究背景及意義 1
1.1.1 研究背景 1
1.1.2 研究意義 2
1.2 課題研究現(xiàn)狀及發(fā)展趨勢 3
1.2.1 研究現(xiàn)狀 3
1.2.2 發(fā)展趨勢 4
1.3 課題研究內(nèi)容及章節(jié)安排 5
1.3.1 主要研究內(nèi)容 5
1.3.2 章節(jié)安排 6
1.4 本章小結 7
第2章 多體系統(tǒng)動力學建模及求解 8
2.1 引言 8
2.2 多剛體系統(tǒng)動力學建模 8
2.3 多柔體系統(tǒng)動力學建模 10
2.3.1 柔性體標記點運動分析 10
2.3.2 外載荷 11
2.3.3 多柔體動力學方程 13
2.4 多體系統(tǒng)動力學方程求解 14
2.4.1 非線性代數(shù)方程組求解 14
2.4.2 微分代數(shù)方程組求解 14
2.5 接觸碰撞問題求解 16
2.6 本章小結 20
第3章 斷路器機構系統(tǒng)剛?cè)岱抡娣治?21
3.1 斷路器機構系統(tǒng)工作原理 21
3.1.1 合閘過程 21
3.1.2 分閘過程 23
3.2 斷路器機構系統(tǒng)動力學模型建立 24
3.2.1 斷路器機構系統(tǒng)實體建模 24
3.2.2 虛擬樣機模型建立 25
3.3 斷路器機構系統(tǒng)多剛體仿真分析 26
3.3.1 裝配分析 26
3.3.2 靜平衡分析 27
3.3.3 運動學分析 27
3.3.4 動力學分析 32
3.4 斷路器機構系統(tǒng)柔性仿真分析 37
3.4.1 劃分有限元網(wǎng)格 37
3.4.2 生成MNF文件 38
3.4.3 柔性仿真分析 40
3.5 本章小結 43
第4..