基于最佳側移剛度分布的多高層鋼.doc
約81頁DOC格式手機打開展開
基于最佳側移剛度分布的多高層鋼,摘要結構的抗震設計應全面注重結構的性能、安全及經(jīng)濟等諸多方面。而傳統(tǒng)的結構設計方法往往偏于保守和安全,材料性能沒有得到充分的發(fā)揮。本文研究的目的就是在保證結構抗震性能的前提下,降低建造的費用,提高設計質量和水平。本文從能量的角度,通過優(yōu)化布置結構側移剛度研究結構構件截面分布規(guī)律,避免結構損傷集中,從而使結構達到最佳的抗...
內容介紹
此文檔由會員 違規(guī)屏蔽12 發(fā)布
摘 要
結構的抗震設計應全面注重結構的性能、安全及經(jīng)濟等諸多方面。而傳統(tǒng)的結構設計方法往往偏于保守和安全,材料性能沒有得到充分的發(fā)揮。本文研究的目的就是在保證結構抗震性能的前提下,降低建造的費用,提高設計質量和水平。
本文從能量的角度,通過優(yōu)化布置結構側移剛度研究結構構件截面分布規(guī)律,避免結構損傷集中,從而使結構達到最佳的抗震性能。目前國內外關于這方面的研究還非常少。
地震響應分析是結構抗震性能分析與設計的基礎。目前,時程分析法對于重要建筑物的抗震分析已成為一種重要方法。我國現(xiàn)行《建筑抗震設計規(guī)范(GB50011-2001)》規(guī)定,時程分析法用于結構在地震作用下的破壞機理和改進抗震設計方法的研究。另外,推覆分析法和日本著名學者秋山宏提出的基于能量平衡的設計法也是獲得必要地震響應值的有效方法。
基于上述背景,本文采用時程分析法結合SAP2000有限元分析軟件,研究多高層鋼框架結構的最佳側移剛度和最佳截面慣性矩的分布規(guī)律,提出設計方法。并利用推覆分析法和能量預測法驗算結果的合理性。
首先,建立多高層鋼框架算例模型,以罕遇地震作用下結構各層累計塑性變形倍率相等為目標,利用地震響應彈塑性時程方法研究結構模型最佳側移剛度和最佳截面慣性矩的分布規(guī)律,提出多高層鋼結構的最佳側移剛度和最佳截面慣性矩的分布式。
其次,建立不同側移剛度分布的算例模型,對本文所揭示的最佳側移剛度和截面慣性矩分布規(guī)律進行驗證,提出基于最佳側移剛度分布的多高層鋼框架結構的抗震設計方法。
最后,以12層設計模型為例,利用推覆分析法和基于能量平衡的設計方法計算設計算例的地震響應值并進行分析比較,考察本文提出的抗震設計方法的可靠性以及在罕遇地震作用下結構的地震響應。
關鍵詞 抗震設計;最佳側移剛度分布;彈塑性時程分析;推覆分析法;能量預測法
ABSTRACT
Seismic design should full focus on structural performance,security,economy and so on. But traditional seismic design usually biased in favor of conservative and security, material properties will not been fully exploited. The purpose of this study is in ensuring the seismic performance of the premise, reduce the cost of construction, Improve the quality and level of design method.
In order to achieve the best seismic performance of structures,this article studies the sections’ distribution of structural members to avoid the concentration of structural damage by arranging structural stiffness optimal from the perspective of energy. Research in this regard at home and abroad is still very small at present.
Seismic performance analysis and design based on the earthquake response of the structures. The time history analysis method has become an important method for seismic analysis of important buildings at present. It is showed in Code for seismic design of buildings that the time history analysis method is used for research on structural damage mechanism under the earthquake and to improve seismic design method. In addtion, pushover analysis procedure and energy method proposed by Akiyama are also effective methods to obtain the necessary earthquake response of the structures.
Based on above background, this paper uses the time history analysis method and SAP2000 to study optimum lateral stiffness distribution and optimum moment of inertia ratio of steel structures, at the same time, a new design method is proposed. Besides, pushover analysis procedure and energy method are used to validate the goodness of the new design method.
Firstly, multi-storey steel structures are designed. In order to make the cumulative plastic deformation ratio of each storey equivalent under rare earthquake, time history analysis method is used to study the optimum lateral stiffness distribution and the optimum moment of inertia of steel structures. At the same time, formulas of the optimum lateral stiffness distribution and the optimum moment of inertia of steel structures distribution are proposed.
Secondly, different kinds of lateral stiffness distribution models are designed to vertify the rightness of the optimum distribution of lateral stiffness and the optimum moment of inertia. Based on the optimum distribution of stiffness and the optimum moment of inertia, a new design method of multi-storey steel structures based on the optimum lateral stiffness distribution is proposed.
At last, In order to validate the goodness of the new design method, 12-storey models are designed, pushover analysis procedure and energy method are used to study the earthquake response of the structures.
Keywords seismic design; optimum lateral stiffness distribution; time-history analysis; pushover analysis procedure; energy method
目 錄
摘 要 I
ABSTRACT III
第1章 緒 論 1
1.1 引言 1
1.2 結構抗震設計課題的國內外研究現(xiàn)狀 1
1.2.1 結構抗震設計思想發(fā)展 2
1.2.2 多高層建筑結構地震作用計算方法 2
1.3 大型有限元軟件SAP2000簡介 3
1.4 本文的研究目的和意義以及主要工作內容 4
第2章 推覆分析法 6
2.1 推覆分析法基本思路 6
2.2 推覆分析法基本過程 7
2.2.1 損傷極限強度的驗證 7
2.2.2 安全極限強度的驗證 10
2.2.3 罕遇地震時結構真實響應值的計算 11
2.3 本章小結 13
第3章 能量預測法 14
3.1 能量平衡的基本方程 14
3.2 設計用能量譜 15
3.3 抗震結構的地震反應預測式 18-br..
結構的抗震設計應全面注重結構的性能、安全及經(jīng)濟等諸多方面。而傳統(tǒng)的結構設計方法往往偏于保守和安全,材料性能沒有得到充分的發(fā)揮。本文研究的目的就是在保證結構抗震性能的前提下,降低建造的費用,提高設計質量和水平。
本文從能量的角度,通過優(yōu)化布置結構側移剛度研究結構構件截面分布規(guī)律,避免結構損傷集中,從而使結構達到最佳的抗震性能。目前國內外關于這方面的研究還非常少。
地震響應分析是結構抗震性能分析與設計的基礎。目前,時程分析法對于重要建筑物的抗震分析已成為一種重要方法。我國現(xiàn)行《建筑抗震設計規(guī)范(GB50011-2001)》規(guī)定,時程分析法用于結構在地震作用下的破壞機理和改進抗震設計方法的研究。另外,推覆分析法和日本著名學者秋山宏提出的基于能量平衡的設計法也是獲得必要地震響應值的有效方法。
基于上述背景,本文采用時程分析法結合SAP2000有限元分析軟件,研究多高層鋼框架結構的最佳側移剛度和最佳截面慣性矩的分布規(guī)律,提出設計方法。并利用推覆分析法和能量預測法驗算結果的合理性。
首先,建立多高層鋼框架算例模型,以罕遇地震作用下結構各層累計塑性變形倍率相等為目標,利用地震響應彈塑性時程方法研究結構模型最佳側移剛度和最佳截面慣性矩的分布規(guī)律,提出多高層鋼結構的最佳側移剛度和最佳截面慣性矩的分布式。
其次,建立不同側移剛度分布的算例模型,對本文所揭示的最佳側移剛度和截面慣性矩分布規(guī)律進行驗證,提出基于最佳側移剛度分布的多高層鋼框架結構的抗震設計方法。
最后,以12層設計模型為例,利用推覆分析法和基于能量平衡的設計方法計算設計算例的地震響應值并進行分析比較,考察本文提出的抗震設計方法的可靠性以及在罕遇地震作用下結構的地震響應。
關鍵詞 抗震設計;最佳側移剛度分布;彈塑性時程分析;推覆分析法;能量預測法
ABSTRACT
Seismic design should full focus on structural performance,security,economy and so on. But traditional seismic design usually biased in favor of conservative and security, material properties will not been fully exploited. The purpose of this study is in ensuring the seismic performance of the premise, reduce the cost of construction, Improve the quality and level of design method.
In order to achieve the best seismic performance of structures,this article studies the sections’ distribution of structural members to avoid the concentration of structural damage by arranging structural stiffness optimal from the perspective of energy. Research in this regard at home and abroad is still very small at present.
Seismic performance analysis and design based on the earthquake response of the structures. The time history analysis method has become an important method for seismic analysis of important buildings at present. It is showed in Code for seismic design of buildings that the time history analysis method is used for research on structural damage mechanism under the earthquake and to improve seismic design method. In addtion, pushover analysis procedure and energy method proposed by Akiyama are also effective methods to obtain the necessary earthquake response of the structures.
Based on above background, this paper uses the time history analysis method and SAP2000 to study optimum lateral stiffness distribution and optimum moment of inertia ratio of steel structures, at the same time, a new design method is proposed. Besides, pushover analysis procedure and energy method are used to validate the goodness of the new design method.
Firstly, multi-storey steel structures are designed. In order to make the cumulative plastic deformation ratio of each storey equivalent under rare earthquake, time history analysis method is used to study the optimum lateral stiffness distribution and the optimum moment of inertia of steel structures. At the same time, formulas of the optimum lateral stiffness distribution and the optimum moment of inertia of steel structures distribution are proposed.
Secondly, different kinds of lateral stiffness distribution models are designed to vertify the rightness of the optimum distribution of lateral stiffness and the optimum moment of inertia. Based on the optimum distribution of stiffness and the optimum moment of inertia, a new design method of multi-storey steel structures based on the optimum lateral stiffness distribution is proposed.
At last, In order to validate the goodness of the new design method, 12-storey models are designed, pushover analysis procedure and energy method are used to study the earthquake response of the structures.
Keywords seismic design; optimum lateral stiffness distribution; time-history analysis; pushover analysis procedure; energy method
目 錄
摘 要 I
ABSTRACT III
第1章 緒 論 1
1.1 引言 1
1.2 結構抗震設計課題的國內外研究現(xiàn)狀 1
1.2.1 結構抗震設計思想發(fā)展 2
1.2.2 多高層建筑結構地震作用計算方法 2
1.3 大型有限元軟件SAP2000簡介 3
1.4 本文的研究目的和意義以及主要工作內容 4
第2章 推覆分析法 6
2.1 推覆分析法基本思路 6
2.2 推覆分析法基本過程 7
2.2.1 損傷極限強度的驗證 7
2.2.2 安全極限強度的驗證 10
2.2.3 罕遇地震時結構真實響應值的計算 11
2.3 本章小結 13
第3章 能量預測法 14
3.1 能量平衡的基本方程 14
3.2 設計用能量譜 15
3.3 抗震結構的地震反應預測式 18-br..
TA們正在看...
- 主題酒店核心競爭力.pdf
- 港口散貨卸船機選型分析.pdf
- 城市供水行業(yè)節(jié)能評估報告.pdf
- 服務業(yè)發(fā)展項目專項資金的申請報告.pdf
- 城區(qū)生活垃圾無害化處理建設項目社會穩(wěn)定風險評估...pdf
- 單縣污水處理廠節(jié)能評估報告終稿(優(yōu)秀甲級資質節(jié)能...pdf
- 60萬噸水泥粉磨站工程節(jié)能評估報告(正文有簡).pdf
- 2010年陜西省環(huán)保產(chǎn)業(yè)發(fā)展專項資金申請報告.pdf
- 服務業(yè)發(fā)展項目專項資金的申請報告.pdf
- 鋼結構彩鋼瓦生產(chǎn)項目資金申請報告.pdf