基于cfd的船用側推器.doc
約71頁DOC格式手機打開展開
基于cfd的船用側推器,摘要側推器可輔助船舶操縱,在船舶和海洋工程領域有著非常廣泛的應用,作為動力定位系統(tǒng)的標準組成裝置,與螺旋槳相比,其水動力性能研究不夠充分,無公開的設計圖譜。在設計或計算中,主要采用部分的定型產(chǎn)品所標定的額定推力,或用導管槳圖譜進行替代設計并修正,結果有一定誤差,無法反映其真實的流場、推力構成、船型影響,也無法比較不同側...
內容介紹
此文檔由會員 違規(guī)屏蔽12 發(fā)布
摘 要
側推器可輔助船舶操縱,在船舶和海洋工程領域有著非常廣泛的應用,作為動力定位系統(tǒng)的標準組成裝置,與螺旋槳相比,其水動力性能研究不夠充分,無公開的設計圖譜。在設計或計算中,主要采用部分的定型產(chǎn)品所標定的額定推力,或用導管槳圖譜進行替代設計并修正,結果有一定誤差,無法反映其真實的流場、推力構成、船型影響,也無法比較不同側推器的效率。故開展對側推器的水動力性能研究具有一定的理論意義和實用價值。
為研究側向推進器的水動力性能,本文以四葉Kaplan型可調距螺旋槳側推器的模型實驗為依據(jù),采用CFD方法分別分析和計算了零航速下側推器的敞水性能以及帶船首側推器的水動力性能,并將CFD敞水模擬計算結果與實驗結果進行對比和驗證。結果表明,所建立的模型和采用數(shù)值方法可行,適合用于分析側推器水動力性能,其平均誤差在5%以內。
本文通過零航速下不同參數(shù)側推器敞水動力性能的計算和流場模擬,研究了不同螺距比、盤面比、轂徑比、通道長度、船首側斜角度以及葉梢間隙對側推器水動力性能以及周圍流場的影響。結果表明:螺距比、轂徑比和葉梢間隙對側推器水動力性能的影響較大,側斜角度對側推器水動力性能有一定的影響,而通道長度和盤面比對側推器水動力性能影響相對較小。
船首及航速的存在對側推器的水動力性能有較大影響。為了更好地模擬側推器實際工作狀況,更準確地分析帶船首側推器的性能和流場情況,利用NAPA軟件建立一個肥大型船首配備側推器來計算和分析船首及航速對側推器水動力性能的影響。進行了不同航速下帶船首側推器的水動力性能研究,并通過側推器和船首流場的模擬驗證了側推器失效的機理。研究結果表明:無航速時,側推器效率最高,隨航速增加,側推器內部槳的推力和轉矩會有所增大,但總體效率和推力下降,達到一定航速時會導致側推器完全失效;其原因在于,在來流的干擾下,由船首兩側的壓差構成的附加推力急劇下降,并轉變?yōu)榉聪蛲屏?,抵消槳的推力,導致失效?br>
關鍵詞:側推器;CFD;水動力性能;航速;MRF;
Abstract
Transverse thrusters are widely used in ship and marine engineering especially in manoeuvring aids, but the difference from propeller is that as a standard component device of dynamic positioning system, the study on hydrodynamic performance of transverse thrusters is not sufficient. In the design and calculation, it mainly uses the rated thrust provided by manufacturers or modified design of ducted propeller. Thus, it can’t reflect the true flow field, thrust structure, ship impact and can not compare the efficiency. So the hydrodynamic performance analysis of transverse thrusters is of both fundamental and applied significance.
In order to study the hydrodynamic performance of transverse thrusters, by using CFD method, the hydrodynamic performance of transverse thrusters with ship speed and bow thrusters is studied. The simulation and verification of thrusters with a four-leaf Ka-type controllable pitch propeller are compared with experimental data and good agreement is obtained. Average error is less than 5%.
In the no ship speed condition, the effects of pitch ratio, expanded area ratio, boss ratio, tunnel length, wall inclination and tip clearance are observed on the performance of the transverse thrusters. The results show that pitch ratio, boss ratio and tip clearance have big effect on the performance; the tilt angle of the bow sides near the transverse thruster has some effecet on the performance; tunnel length and expanded area ratio have only a little effect on the performance.
The performance of bow thrusters has a strong dependence of their effectiveness on the bow and ship speed. In order to accurately analyze the flow field around the thrusters, a bow equipped by a thruster designed by NAPA is used to calculate the performance of bow thrusters with and without ship speed. After studying the change of performance under different ship speeds, the thrusters’ failure mechanism is discussed. The result proves that transverse thrusters are at the most effective when the vessel is stationary and the thrusters tend to lose effectiveness as the vessel increase its ahead. But the presence of ship speed will increase the thrust and torque of the inner propeller. The reason of thrusters’ failure lay to the pressure of the bow decreasing rapidly and reversing which balance out the thrust produced by the inner propeller.
Key words: transverse thrusters; CFD; hydrodynamic performance; ship speed; MRF
目 錄
摘 要 I
Abstract II
目 錄 III
Content V
第1章 緒論 1
1.1研究背景及意義 1
1.2側推器概述 2
1.2.1側推器的優(yōu)缺點 2
1.2.2側推器的結構 3
1.2.3側推器的工作原理 4
1.3計算方法進展 5
1.3.1 螺旋槳的升力面理論 5
1.3.2 螺旋槳的面元法 6
1.3.3 基于粘流理論的螺旋槳CFD計算方法 6
1.4基于CFD的螺旋槳水動力性能研究現(xiàn)狀 7
1.5側推器國內外的研究現(xiàn)狀 9
1.5.1 零航速時,側推器推力和力矩的研究 9
1.5.2 有航速時,側推器推力和力矩變化的研究 10
1.5.3 側推器機構設計研究 11
1.6論文主要研究內容 11
第2章 側推器水動力性能分析的數(shù)學模型 13
2.1概述 13
2.2數(shù)學模型 13
2.2.1基本控制方程 13
2.2.2湍流模型 14
2.3數(shù)值方法 18
2.3.1離散方法 18
2.3.2離散方程的求解 19
2.3.3多參考系模型 19
2.4側推器的性能特征 20
2.5本章小結 20
第3章 零航速時側推器敞水性能驗證與分析 22
3.1三維模..
側推器可輔助船舶操縱,在船舶和海洋工程領域有著非常廣泛的應用,作為動力定位系統(tǒng)的標準組成裝置,與螺旋槳相比,其水動力性能研究不夠充分,無公開的設計圖譜。在設計或計算中,主要采用部分的定型產(chǎn)品所標定的額定推力,或用導管槳圖譜進行替代設計并修正,結果有一定誤差,無法反映其真實的流場、推力構成、船型影響,也無法比較不同側推器的效率。故開展對側推器的水動力性能研究具有一定的理論意義和實用價值。
為研究側向推進器的水動力性能,本文以四葉Kaplan型可調距螺旋槳側推器的模型實驗為依據(jù),采用CFD方法分別分析和計算了零航速下側推器的敞水性能以及帶船首側推器的水動力性能,并將CFD敞水模擬計算結果與實驗結果進行對比和驗證。結果表明,所建立的模型和采用數(shù)值方法可行,適合用于分析側推器水動力性能,其平均誤差在5%以內。
本文通過零航速下不同參數(shù)側推器敞水動力性能的計算和流場模擬,研究了不同螺距比、盤面比、轂徑比、通道長度、船首側斜角度以及葉梢間隙對側推器水動力性能以及周圍流場的影響。結果表明:螺距比、轂徑比和葉梢間隙對側推器水動力性能的影響較大,側斜角度對側推器水動力性能有一定的影響,而通道長度和盤面比對側推器水動力性能影響相對較小。
船首及航速的存在對側推器的水動力性能有較大影響。為了更好地模擬側推器實際工作狀況,更準確地分析帶船首側推器的性能和流場情況,利用NAPA軟件建立一個肥大型船首配備側推器來計算和分析船首及航速對側推器水動力性能的影響。進行了不同航速下帶船首側推器的水動力性能研究,并通過側推器和船首流場的模擬驗證了側推器失效的機理。研究結果表明:無航速時,側推器效率最高,隨航速增加,側推器內部槳的推力和轉矩會有所增大,但總體效率和推力下降,達到一定航速時會導致側推器完全失效;其原因在于,在來流的干擾下,由船首兩側的壓差構成的附加推力急劇下降,并轉變?yōu)榉聪蛲屏?,抵消槳的推力,導致失效?br>
關鍵詞:側推器;CFD;水動力性能;航速;MRF;
Abstract
Transverse thrusters are widely used in ship and marine engineering especially in manoeuvring aids, but the difference from propeller is that as a standard component device of dynamic positioning system, the study on hydrodynamic performance of transverse thrusters is not sufficient. In the design and calculation, it mainly uses the rated thrust provided by manufacturers or modified design of ducted propeller. Thus, it can’t reflect the true flow field, thrust structure, ship impact and can not compare the efficiency. So the hydrodynamic performance analysis of transverse thrusters is of both fundamental and applied significance.
In order to study the hydrodynamic performance of transverse thrusters, by using CFD method, the hydrodynamic performance of transverse thrusters with ship speed and bow thrusters is studied. The simulation and verification of thrusters with a four-leaf Ka-type controllable pitch propeller are compared with experimental data and good agreement is obtained. Average error is less than 5%.
In the no ship speed condition, the effects of pitch ratio, expanded area ratio, boss ratio, tunnel length, wall inclination and tip clearance are observed on the performance of the transverse thrusters. The results show that pitch ratio, boss ratio and tip clearance have big effect on the performance; the tilt angle of the bow sides near the transverse thruster has some effecet on the performance; tunnel length and expanded area ratio have only a little effect on the performance.
The performance of bow thrusters has a strong dependence of their effectiveness on the bow and ship speed. In order to accurately analyze the flow field around the thrusters, a bow equipped by a thruster designed by NAPA is used to calculate the performance of bow thrusters with and without ship speed. After studying the change of performance under different ship speeds, the thrusters’ failure mechanism is discussed. The result proves that transverse thrusters are at the most effective when the vessel is stationary and the thrusters tend to lose effectiveness as the vessel increase its ahead. But the presence of ship speed will increase the thrust and torque of the inner propeller. The reason of thrusters’ failure lay to the pressure of the bow decreasing rapidly and reversing which balance out the thrust produced by the inner propeller.
Key words: transverse thrusters; CFD; hydrodynamic performance; ship speed; MRF
目 錄
摘 要 I
Abstract II
目 錄 III
Content V
第1章 緒論 1
1.1研究背景及意義 1
1.2側推器概述 2
1.2.1側推器的優(yōu)缺點 2
1.2.2側推器的結構 3
1.2.3側推器的工作原理 4
1.3計算方法進展 5
1.3.1 螺旋槳的升力面理論 5
1.3.2 螺旋槳的面元法 6
1.3.3 基于粘流理論的螺旋槳CFD計算方法 6
1.4基于CFD的螺旋槳水動力性能研究現(xiàn)狀 7
1.5側推器國內外的研究現(xiàn)狀 9
1.5.1 零航速時,側推器推力和力矩的研究 9
1.5.2 有航速時,側推器推力和力矩變化的研究 10
1.5.3 側推器機構設計研究 11
1.6論文主要研究內容 11
第2章 側推器水動力性能分析的數(shù)學模型 13
2.1概述 13
2.2數(shù)學模型 13
2.2.1基本控制方程 13
2.2.2湍流模型 14
2.3數(shù)值方法 18
2.3.1離散方法 18
2.3.2離散方程的求解 19
2.3.3多參考系模型 19
2.4側推器的性能特征 20
2.5本章小結 20
第3章 零航速時側推器敞水性能驗證與分析 22
3.1三維模..