大型耙吸挖泥船動力定位控制.doc
約88頁DOC格式手機打開展開
大型耙吸挖泥船動力定位控制,摘 要動力定位是實現耙吸挖泥船精確疏浚定位、加快疏浚速度、提升疏浚檔次、提高疏浚經濟效益的一種重要保證。它具有不受水深限制、投入撤離迅速等優(yōu)點,并且可以使船實現精確的機動。本項目在江蘇省科技廳高新技術研究項目的支持下,提出了“大型耙吸挖泥船動力定位控制算法研究”的任務,并作為碩士論文的研究課題。根據耙吸挖泥船控制系統(tǒng)的...
內容介紹
此文檔由會員 違規(guī)屏蔽12 發(fā)布
摘 要
動力定位是實現耙吸挖泥船精確疏浚定位、加快疏浚速度、提升疏浚檔次、提高疏浚經濟效益的一種重要保證。它具有不受水深限制、投入撤離迅速等優(yōu)點,并且可以使船實現精確的機動。本項目在江蘇省科技廳高新技術研究項目的支持下,提出了“大型耙吸挖泥船動力定位控制算法研究”的任務,并作為碩士論文的研究課題。根據耙吸挖泥船控制系統(tǒng)的要求,針對動力定位系統(tǒng)的疏浚模式、數學模型、數字濾波、控制算法及相關問題進行了系統(tǒng)的探討與研究,論文研究具有明確的工程應用背景和實用價值,其主要貢獻如下:
針對耙吸挖泥船復雜的工作流程,考慮到耙吸挖泥船疏浚過程的階段性,提出了耙吸挖泥船疏浚時的八種模式,分析了DT低速疏浚時的耙管補償力和DP艏噴時的艏噴后座力的補償方法,并對風浪流等環(huán)境力的計算進行了詳細的介紹,為以后各章打下堅實的基礎。本文重點研究DP部分。
根據某大型耙吸挖泥船疏浚時運動特性,建立了其低頻和高頻的數學模型,重點運用Kalman濾波器對其高頻部分進行濾波,并編寫了Matlab仿真及C語言濾波程序,探討了Kalman濾波器的穩(wěn)定性和收斂性,提出了收斂性的判別方法及改善措施。仿真結果表明:離散Kalman濾波具有良好的濾波效果,可以很好地濾除高頻信號,能夠滿足工程實船的需要。
針對實際應用中,很難建立起耙吸挖泥船精確的數學模型這一問題,在控制器設計部分,本課題運用基于模糊的PID控制算法作為其動力定位系統(tǒng)的工程化應用方法。在認真總結和分析實船工作人員經驗的基礎上,提出了根據不同偏差范圍進行控制的思想,并進行了模糊規(guī)則的制定,同時用Matlab中的Fuzzy模塊和Simulink對DP模式下滿載、半載、空載三種情況下的位置和艏向分別進行了仿真,并進行了綜合分析比較。仿真結果顯示:基于模糊的PID控制器能夠獲得更好的系統(tǒng)動態(tài)性能和穩(wěn)態(tài)性能,可以滿足實船的控制需要,具有實際的工程價值。
針對耙吸挖泥船系統(tǒng)的非線性等特點,在借鑒挪威理工大學T.I.Fossen博士研究成果的基礎上,本文進行了適當的創(chuàng)新,提出了局部最優(yōu)反步法,對某耙吸挖泥船動力定位控制系統(tǒng)進行了一些理論方面的研究、分析和設計工作。
論文研究的主要貢獻和研究成果已在某大型耙吸挖泥船上進行了應用,取得了很好的實船效果,獲得了航道局、公司和導師的肯定與好評。
關鍵詞 耙吸挖泥船;動力定位;Kalman濾波器;模糊PID;局部最優(yōu)反步法
Abstract
Dynamic Positioning System(DPS) is an important guarantee to achieve accurate Trailing Suction Hopper Dredger (TSHD)dredging location, speed up the dredging rate, improve quality dredging, dredging to improve economic efficiency. It has not limited depth, into the advantages of rapid evacuation, and can maneuver the ship accurate. The project in Jiangsu Province Science and Technology Department with the support of high-tech research projects, proposed a "Design Control algorithm of a Dynamic Positioning System for the Large Trailing Suction Hopper Dredger control" of the task, and as a master's thesis research. Based on TSHD control system requirements, DPS for dredging model, mathematical model, digital filter, the control algorithm and related problems of the system and research thesis with a clear engineering background and practical value, The main contributions are as follows:
TSHD for the complicated work flow, taking into account the process of TSHD dredging the stage, TSHD dredging is proposed when the eight models of the DT low rake when dredging force and compensation management DP bow bow spray jet recoil when the compensation method, and the storm flow calculations and other environmental forces carried out a detailed introduction to each chapter for the future and lay a solid foundation. This paper focuses on DP parts.
According to a large TSHD dredging when the movement characteristic of the low and high frequency of its mathematical model, focusing on the use of Filter high-frequency part of its filter, and the preparation of the Matlab simulation and the C language filter program, discussed Filter stability and convergence, the convergence of the proposed improvement measures and the Criterion. Simulation results show that: the discrete Filter has good filtering effect, filter out high frequency signals can be well able to meet the engineering needs of the real ship.
For practical applications, it is difficult to establish TSHD precise mathematical model of this problem in the controller design part, the subject of the use of fuzzy-based Control algorithm as its DPS application of the engineering method. Careful summary and analysis of the real ship based on the experience of staff proposed scope of control according to different ideological bias, and the fuzzy rules, while using Matlab's Fuzzy module and SImulink in DP mode to the full and half no-load three cases the position and heading, respectively, were simulated, and conducted a comprehensive analysis and comparison. Simulation results show that: Based on fuzzy Controller can obtain better dynamic performance and stable performance to meet the control requirements of the real ship, with the actual project value.
TSHD for the nonlinear characteristics, drawing on the Norwegian University of Technology, Dr. T.I.Fossen on the basis of research results, this innovative work was done properly, the local optimal backstepping is proposed and applied to a TSHD DP control system, mainly for..
動力定位是實現耙吸挖泥船精確疏浚定位、加快疏浚速度、提升疏浚檔次、提高疏浚經濟效益的一種重要保證。它具有不受水深限制、投入撤離迅速等優(yōu)點,并且可以使船實現精確的機動。本項目在江蘇省科技廳高新技術研究項目的支持下,提出了“大型耙吸挖泥船動力定位控制算法研究”的任務,并作為碩士論文的研究課題。根據耙吸挖泥船控制系統(tǒng)的要求,針對動力定位系統(tǒng)的疏浚模式、數學模型、數字濾波、控制算法及相關問題進行了系統(tǒng)的探討與研究,論文研究具有明確的工程應用背景和實用價值,其主要貢獻如下:
針對耙吸挖泥船復雜的工作流程,考慮到耙吸挖泥船疏浚過程的階段性,提出了耙吸挖泥船疏浚時的八種模式,分析了DT低速疏浚時的耙管補償力和DP艏噴時的艏噴后座力的補償方法,并對風浪流等環(huán)境力的計算進行了詳細的介紹,為以后各章打下堅實的基礎。本文重點研究DP部分。
根據某大型耙吸挖泥船疏浚時運動特性,建立了其低頻和高頻的數學模型,重點運用Kalman濾波器對其高頻部分進行濾波,并編寫了Matlab仿真及C語言濾波程序,探討了Kalman濾波器的穩(wěn)定性和收斂性,提出了收斂性的判別方法及改善措施。仿真結果表明:離散Kalman濾波具有良好的濾波效果,可以很好地濾除高頻信號,能夠滿足工程實船的需要。
針對實際應用中,很難建立起耙吸挖泥船精確的數學模型這一問題,在控制器設計部分,本課題運用基于模糊的PID控制算法作為其動力定位系統(tǒng)的工程化應用方法。在認真總結和分析實船工作人員經驗的基礎上,提出了根據不同偏差范圍進行控制的思想,并進行了模糊規(guī)則的制定,同時用Matlab中的Fuzzy模塊和Simulink對DP模式下滿載、半載、空載三種情況下的位置和艏向分別進行了仿真,并進行了綜合分析比較。仿真結果顯示:基于模糊的PID控制器能夠獲得更好的系統(tǒng)動態(tài)性能和穩(wěn)態(tài)性能,可以滿足實船的控制需要,具有實際的工程價值。
針對耙吸挖泥船系統(tǒng)的非線性等特點,在借鑒挪威理工大學T.I.Fossen博士研究成果的基礎上,本文進行了適當的創(chuàng)新,提出了局部最優(yōu)反步法,對某耙吸挖泥船動力定位控制系統(tǒng)進行了一些理論方面的研究、分析和設計工作。
論文研究的主要貢獻和研究成果已在某大型耙吸挖泥船上進行了應用,取得了很好的實船效果,獲得了航道局、公司和導師的肯定與好評。
關鍵詞 耙吸挖泥船;動力定位;Kalman濾波器;模糊PID;局部最優(yōu)反步法
Abstract
Dynamic Positioning System(DPS) is an important guarantee to achieve accurate Trailing Suction Hopper Dredger (TSHD)dredging location, speed up the dredging rate, improve quality dredging, dredging to improve economic efficiency. It has not limited depth, into the advantages of rapid evacuation, and can maneuver the ship accurate. The project in Jiangsu Province Science and Technology Department with the support of high-tech research projects, proposed a "Design Control algorithm of a Dynamic Positioning System for the Large Trailing Suction Hopper Dredger control" of the task, and as a master's thesis research. Based on TSHD control system requirements, DPS for dredging model, mathematical model, digital filter, the control algorithm and related problems of the system and research thesis with a clear engineering background and practical value, The main contributions are as follows:
TSHD for the complicated work flow, taking into account the process of TSHD dredging the stage, TSHD dredging is proposed when the eight models of the DT low rake when dredging force and compensation management DP bow bow spray jet recoil when the compensation method, and the storm flow calculations and other environmental forces carried out a detailed introduction to each chapter for the future and lay a solid foundation. This paper focuses on DP parts.
According to a large TSHD dredging when the movement characteristic of the low and high frequency of its mathematical model, focusing on the use of Filter high-frequency part of its filter, and the preparation of the Matlab simulation and the C language filter program, discussed Filter stability and convergence, the convergence of the proposed improvement measures and the Criterion. Simulation results show that: the discrete Filter has good filtering effect, filter out high frequency signals can be well able to meet the engineering needs of the real ship.
For practical applications, it is difficult to establish TSHD precise mathematical model of this problem in the controller design part, the subject of the use of fuzzy-based Control algorithm as its DPS application of the engineering method. Careful summary and analysis of the real ship based on the experience of staff proposed scope of control according to different ideological bias, and the fuzzy rules, while using Matlab's Fuzzy module and SImulink in DP mode to the full and half no-load three cases the position and heading, respectively, were simulated, and conducted a comprehensive analysis and comparison. Simulation results show that: Based on fuzzy Controller can obtain better dynamic performance and stable performance to meet the control requirements of the real ship, with the actual project value.
TSHD for the nonlinear characteristics, drawing on the Norwegian University of Technology, Dr. T.I.Fossen on the basis of research results, this innovative work was done properly, the local optimal backstepping is proposed and applied to a TSHD DP control system, mainly for..