船舶電力推進(jìn)系統(tǒng).doc
約110頁(yè)DOC格式手機(jī)打開展開
船舶電力推進(jìn)系統(tǒng),摘 要隨著船舶電力推進(jìn)技術(shù)的快速發(fā)展和廣泛應(yīng)用,交流電力推進(jìn)已經(jīng)取代直流電力推進(jìn)成為主流。同時(shí),推進(jìn)系統(tǒng)相關(guān)設(shè)備需求日益增大,但國(guó)產(chǎn)設(shè)備的裝船率并不高,制約著我國(guó)船舶行業(yè)的發(fā)展。研究船舶電力推進(jìn)關(guān)鍵技術(shù)有助于增強(qiáng)我國(guó)船舶行業(yè)的綜合競(jìng)爭(zhēng)力。因此,本課題對(duì)船舶電力推進(jìn)系統(tǒng)直接轉(zhuǎn)矩控制(dtc)相關(guān)技術(shù)進(jìn)行研究。本文以傳統(tǒng)d...
內(nèi)容介紹
此文檔由會(huì)員 違規(guī)屏蔽12 發(fā)布
摘 要
隨著船舶電力推進(jìn)技術(shù)的快速發(fā)展和廣泛應(yīng)用,交流電力推進(jìn)已經(jīng)取代直流電力推進(jìn)成為主流。同時(shí),推進(jìn)系統(tǒng)相關(guān)設(shè)備需求日益增大,但國(guó)產(chǎn)設(shè)備的裝船率并不高,制約著我國(guó)船舶行業(yè)的發(fā)展。研究船舶電力推進(jìn)關(guān)鍵技術(shù)有助于增強(qiáng)我國(guó)船舶行業(yè)的綜合競(jìng)爭(zhēng)力。因此,本課題對(duì)船舶電力推進(jìn)系統(tǒng)直接轉(zhuǎn)矩控制(DTC)相關(guān)技術(shù)進(jìn)行研究。
本文以傳統(tǒng)DTC為理論基礎(chǔ),分析DTC的原理和結(jié)構(gòu),在MATLAB/Simulink中對(duì)系統(tǒng)各個(gè)組成部分仿真建模,分析電機(jī)的速度、磁鏈和轉(zhuǎn)矩特性。針對(duì)傳統(tǒng)DTC系統(tǒng)磁鏈和轉(zhuǎn)矩脈動(dòng)較大,本文首先采用空間矢量脈寬調(diào)制技術(shù)與DTC系統(tǒng)相結(jié)合來(lái)改善磁鏈和轉(zhuǎn)矩的脈動(dòng),仿真表明SVM-DTC系統(tǒng)的性能得到全面的提高。其次,定子磁鏈的估測(cè)精度直接影響到系統(tǒng)的性能,而傳統(tǒng)U-I磁鏈觀測(cè)模型精度低,本文采用新型基于PI鎖相原理的定子磁鏈觀測(cè)器代替?zhèn)鹘y(tǒng)的U-I觀測(cè)器,磁鏈觀測(cè)的精度和系統(tǒng)的性能得到改善。
無(wú)速度傳感器技術(shù)在船舶電力推進(jìn)中有著廣闊的前景,介紹了幾種常用的速度估計(jì)方法后,本文重點(diǎn)分析了模型參考自適應(yīng)系統(tǒng)(MRAS)速度估計(jì)方法和原理,并應(yīng)用到SVM-DTC系統(tǒng)中,仿真表明MRAS速度估計(jì)的精度和動(dòng)態(tài)性有待提高。由于MRAS系統(tǒng)中由Popov超穩(wěn)理論推導(dǎo)出的自適應(yīng)率為PI控制器,PI參數(shù)對(duì)速度估計(jì)精度影響較大,因此,本文采用對(duì)角遞歸神經(jīng)網(wǎng)絡(luò)(DRNN)算法與MRAS相結(jié)合,動(dòng)態(tài)地整定MRAS系統(tǒng)的PI參數(shù),DRNN-MRAS速度估計(jì)的精度和動(dòng)態(tài)性顯著提高。
本文針對(duì)實(shí)際船舶,建立船舶-螺旋槳仿真模型,分析船舶的速度、推力和扭矩特性。并分別將上述的傳統(tǒng)DTC、SVM-DTC和無(wú)速度DTC與實(shí)際船舶-螺旋槳模型結(jié)合,建立船舶電力推進(jìn)DTC綜合仿真系統(tǒng)。對(duì)比分析當(dāng)施加螺旋槳負(fù)載時(shí)DTC系統(tǒng)電機(jī)的響應(yīng)特性,以及施加螺旋槳負(fù)載擾動(dòng)時(shí)對(duì)DTC系統(tǒng)的影響。經(jīng)過(guò)驗(yàn)證,在船舶電力推進(jìn)系統(tǒng)中,SVM-DTC具有較好的穩(wěn)態(tài)和動(dòng)態(tài)性能,傳統(tǒng)DTC動(dòng)態(tài)性能優(yōu)于穩(wěn)態(tài),而無(wú)速度DTC穩(wěn)態(tài)性能優(yōu)于其動(dòng)態(tài)性能。
關(guān)鍵字:船舶電力推進(jìn);直接轉(zhuǎn)矩控制;空間矢量脈寬調(diào)制;鎖相環(huán);模型參考自適應(yīng)系統(tǒng);對(duì)角遞歸神經(jīng)網(wǎng)絡(luò);船槳模型
Abstract
With the rapid development and widespread application of the ship electric propulsion technology, AC electric propulsion has replaced the DC electric propulsion and becomes the mainstream. What’s more, demands for the associated equipment of propulsion system are growing increasingly. However, the shipment rate of the domestic equipment is very low, which restricts the development of the shipping industry of our country. So it is helpful to research key technology of the marine electric propulsion in order to enhance the competitive ability of our country shipping industry. The DTC technology of marine electric propulsion is researched in this thesis.
This thesis analyses the principle and structure of direct torque control based on the traditional direct torque control, and establishes simulation models of each component of the system in the Simulink platform in MATLAB, then analyses the curves in which AC motor runs in constant speed state and constant torque state. For the traditional direct torque control possess great flux and torque, this thesis firstly adopts SVM combined with direct torque control system to improve the magnetic chain and torque, and the simulation results show that SVM-DTC system performance is overall improved. Secondly, estimation accuracy of stator flux directly affects the performance of the system, tradition U-I flux observer has low accuracy, this thesis adopt the improved stator flux observer based on the principle of PI phase lock loop to take the place of the traditional U-I observer, as a result, the flux observer accuracy and the performance of the system are improved greatly.
Since there is a broad prospect to apply without speed sensor technology in ship electric propulsion, this thesis analyzes the speed estimation method which is based on model reference adaptive (MRAS) after introducing some commonly used speed estimation, then which is applied in the SVM-DTC system. The simulation result showed that the precision and dynamics of MRAS speed estimation is awaited with improvement. Because in the MRAS system the adaptive rate deduced by Popov stability theory is PI controller, PI parameters have a big effect on the speed estimation precision, therefore this thesis combines diagonal recurrent neural network (DRNN) algorithm with MRAS to dynamically set PI parameters, the precision and dynamics of DRNN-MRAS speed estimation improved greatly.
In the end this thesis builds the ship-motor-propeller simulation model, analyzing the speed, thrust and torque characteristics of ships, and applies the traditional DTC, SVM-DTC and speed sensorless DTC to ship electric propulsion system respectively, establishes ship electric propulsion DTC comprehensive simulation system. What’s more, it is comparatively analyzed on the motor characteristics of the DTC system when the propellers are loaded on and the effect on the DTC system when the propellers are put load disturbance. According to verification, in the ship electric propulsion system SVM-DTC has good steady state and dynamics performance, dynamics performance of traditio..
隨著船舶電力推進(jìn)技術(shù)的快速發(fā)展和廣泛應(yīng)用,交流電力推進(jìn)已經(jīng)取代直流電力推進(jìn)成為主流。同時(shí),推進(jìn)系統(tǒng)相關(guān)設(shè)備需求日益增大,但國(guó)產(chǎn)設(shè)備的裝船率并不高,制約著我國(guó)船舶行業(yè)的發(fā)展。研究船舶電力推進(jìn)關(guān)鍵技術(shù)有助于增強(qiáng)我國(guó)船舶行業(yè)的綜合競(jìng)爭(zhēng)力。因此,本課題對(duì)船舶電力推進(jìn)系統(tǒng)直接轉(zhuǎn)矩控制(DTC)相關(guān)技術(shù)進(jìn)行研究。
本文以傳統(tǒng)DTC為理論基礎(chǔ),分析DTC的原理和結(jié)構(gòu),在MATLAB/Simulink中對(duì)系統(tǒng)各個(gè)組成部分仿真建模,分析電機(jī)的速度、磁鏈和轉(zhuǎn)矩特性。針對(duì)傳統(tǒng)DTC系統(tǒng)磁鏈和轉(zhuǎn)矩脈動(dòng)較大,本文首先采用空間矢量脈寬調(diào)制技術(shù)與DTC系統(tǒng)相結(jié)合來(lái)改善磁鏈和轉(zhuǎn)矩的脈動(dòng),仿真表明SVM-DTC系統(tǒng)的性能得到全面的提高。其次,定子磁鏈的估測(cè)精度直接影響到系統(tǒng)的性能,而傳統(tǒng)U-I磁鏈觀測(cè)模型精度低,本文采用新型基于PI鎖相原理的定子磁鏈觀測(cè)器代替?zhèn)鹘y(tǒng)的U-I觀測(cè)器,磁鏈觀測(cè)的精度和系統(tǒng)的性能得到改善。
無(wú)速度傳感器技術(shù)在船舶電力推進(jìn)中有著廣闊的前景,介紹了幾種常用的速度估計(jì)方法后,本文重點(diǎn)分析了模型參考自適應(yīng)系統(tǒng)(MRAS)速度估計(jì)方法和原理,并應(yīng)用到SVM-DTC系統(tǒng)中,仿真表明MRAS速度估計(jì)的精度和動(dòng)態(tài)性有待提高。由于MRAS系統(tǒng)中由Popov超穩(wěn)理論推導(dǎo)出的自適應(yīng)率為PI控制器,PI參數(shù)對(duì)速度估計(jì)精度影響較大,因此,本文采用對(duì)角遞歸神經(jīng)網(wǎng)絡(luò)(DRNN)算法與MRAS相結(jié)合,動(dòng)態(tài)地整定MRAS系統(tǒng)的PI參數(shù),DRNN-MRAS速度估計(jì)的精度和動(dòng)態(tài)性顯著提高。
本文針對(duì)實(shí)際船舶,建立船舶-螺旋槳仿真模型,分析船舶的速度、推力和扭矩特性。并分別將上述的傳統(tǒng)DTC、SVM-DTC和無(wú)速度DTC與實(shí)際船舶-螺旋槳模型結(jié)合,建立船舶電力推進(jìn)DTC綜合仿真系統(tǒng)。對(duì)比分析當(dāng)施加螺旋槳負(fù)載時(shí)DTC系統(tǒng)電機(jī)的響應(yīng)特性,以及施加螺旋槳負(fù)載擾動(dòng)時(shí)對(duì)DTC系統(tǒng)的影響。經(jīng)過(guò)驗(yàn)證,在船舶電力推進(jìn)系統(tǒng)中,SVM-DTC具有較好的穩(wěn)態(tài)和動(dòng)態(tài)性能,傳統(tǒng)DTC動(dòng)態(tài)性能優(yōu)于穩(wěn)態(tài),而無(wú)速度DTC穩(wěn)態(tài)性能優(yōu)于其動(dòng)態(tài)性能。
關(guān)鍵字:船舶電力推進(jìn);直接轉(zhuǎn)矩控制;空間矢量脈寬調(diào)制;鎖相環(huán);模型參考自適應(yīng)系統(tǒng);對(duì)角遞歸神經(jīng)網(wǎng)絡(luò);船槳模型
Abstract
With the rapid development and widespread application of the ship electric propulsion technology, AC electric propulsion has replaced the DC electric propulsion and becomes the mainstream. What’s more, demands for the associated equipment of propulsion system are growing increasingly. However, the shipment rate of the domestic equipment is very low, which restricts the development of the shipping industry of our country. So it is helpful to research key technology of the marine electric propulsion in order to enhance the competitive ability of our country shipping industry. The DTC technology of marine electric propulsion is researched in this thesis.
This thesis analyses the principle and structure of direct torque control based on the traditional direct torque control, and establishes simulation models of each component of the system in the Simulink platform in MATLAB, then analyses the curves in which AC motor runs in constant speed state and constant torque state. For the traditional direct torque control possess great flux and torque, this thesis firstly adopts SVM combined with direct torque control system to improve the magnetic chain and torque, and the simulation results show that SVM-DTC system performance is overall improved. Secondly, estimation accuracy of stator flux directly affects the performance of the system, tradition U-I flux observer has low accuracy, this thesis adopt the improved stator flux observer based on the principle of PI phase lock loop to take the place of the traditional U-I observer, as a result, the flux observer accuracy and the performance of the system are improved greatly.
Since there is a broad prospect to apply without speed sensor technology in ship electric propulsion, this thesis analyzes the speed estimation method which is based on model reference adaptive (MRAS) after introducing some commonly used speed estimation, then which is applied in the SVM-DTC system. The simulation result showed that the precision and dynamics of MRAS speed estimation is awaited with improvement. Because in the MRAS system the adaptive rate deduced by Popov stability theory is PI controller, PI parameters have a big effect on the speed estimation precision, therefore this thesis combines diagonal recurrent neural network (DRNN) algorithm with MRAS to dynamically set PI parameters, the precision and dynamics of DRNN-MRAS speed estimation improved greatly.
In the end this thesis builds the ship-motor-propeller simulation model, analyzing the speed, thrust and torque characteristics of ships, and applies the traditional DTC, SVM-DTC and speed sensorless DTC to ship electric propulsion system respectively, establishes ship electric propulsion DTC comprehensive simulation system. What’s more, it is comparatively analyzed on the motor characteristics of the DTC system when the propellers are loaded on and the effect on the DTC system when the propellers are put load disturbance. According to verification, in the ship electric propulsion system SVM-DTC has good steady state and dynamics performance, dynamics performance of traditio..
TA們正在看...
- 公司財(cái)務(wù)經(jīng)理工作總結(jié)1500字.docx
- 公司財(cái)務(wù)統(tǒng)計(jì)員個(gè)人年工作總結(jié).docx
- 公司財(cái)務(wù)統(tǒng)計(jì)員年工作總結(jié)范文.docx
- 公司財(cái)務(wù)統(tǒng)計(jì)員年終個(gè)人工作總結(jié).docx
- 公司財(cái)務(wù)統(tǒng)計(jì)年工作總結(jié).docx
- 公司財(cái)務(wù)統(tǒng)計(jì)年終工作總結(jié)范文.docx
- 公司財(cái)務(wù)試用期工作小結(jié).docx
- 公司財(cái)務(wù)試用期工作總結(jié)模板.docx
- 公司財(cái)務(wù)試用期工作總結(jié)范文三篇.docx
- 公司財(cái)務(wù)部工作總結(jié).docx