基于dtc的伺服驅(qū)動器.doc
約90頁DOC格式手機打開展開
基于dtc的伺服驅(qū)動器,摘要隨著電力電子技術(shù)、現(xiàn)代控制理論和數(shù)字信號處理器的發(fā)展,伺服系統(tǒng)在工業(yè)控制中獲得了越來越多的應用。伺服系統(tǒng)中,伺服電機和伺服驅(qū)動器組成了伺服系統(tǒng)的核心。國外已經(jīng)有了相對成熟的伺服產(chǎn)品,而國內(nèi)對于高性能的伺服產(chǎn)品的需求依然以進口為主,在這種背景下,本文研究并設計了基于永磁同步電機的伺服驅(qū)動器。本文結(jié)構(gòu)分為兩部分:理論研...
內(nèi)容介紹
此文檔由會員 違規(guī)屏蔽12 發(fā)布
摘 要
隨著電力電子技術(shù)、現(xiàn)代控制理論和數(shù)字信號處理器的發(fā)展,伺服系統(tǒng)在工業(yè)控制中獲得了越來越多的應用。伺服系統(tǒng)中,伺服電機和伺服驅(qū)動器組成了伺服系統(tǒng)的核心。國外已經(jīng)有了相對成熟的伺服產(chǎn)品,而國內(nèi)對于高性能的伺服產(chǎn)品的需求依然以進口為主,在這種背景下,本文研究并設計了基于永磁同步電機的伺服驅(qū)動器。
本文結(jié)構(gòu)分為兩部分:理論研究和構(gòu)建實驗平臺。具體內(nèi)容如下:
1、通過對永磁同步電動機的數(shù)學建模,分別研究了基于開關(guān)表的常規(guī)DTC和基于空間電壓矢量的SVM-DTC。針對常規(guī)DTC中轉(zhuǎn)矩磁鏈脈動大的缺點,通過引入預測空間電壓矢量來代替開關(guān)表,提升系統(tǒng)的動、靜態(tài)性能。仿真結(jié)果表明,基于SVM-DTC的控制策略,磁鏈和轉(zhuǎn)矩脈動明顯減小,定子電流波形平滑。
2、分析了永磁同步電機的無速度傳感器控制方案。在比較了各種控制算法優(yōu)缺點的基礎(chǔ)上,實現(xiàn)了滑模觀測器。針對滑模觀測器估計轉(zhuǎn)速抖動和轉(zhuǎn)子位置偏差的問題,本文引入擴展的卡爾曼濾波器代替模型中的低通濾波器。仿真結(jié)果表明:引入的擴展卡爾曼濾波器能有效降低滑模觀測器中估計轉(zhuǎn)速的抖動,提高轉(zhuǎn)子位置的估計精度。
3、構(gòu)建了伺服驅(qū)動器的軟硬件實驗平臺。硬件部分主要設計并完成了基于DSP核心控制模塊和基于IPM的功率驅(qū)動模塊。核心控制模塊主要完成了DSP的最小系統(tǒng)設計;功率驅(qū)動模塊主要完成了IPM的外圍電路、電流電壓采樣電路、光耦隔離電路、保護電路等。軟件部分采用模塊化的設計,包括主程序和各中斷子程序。在CCS2.0的環(huán)境下進行編譯和調(diào)試,最終實現(xiàn)了電機的啟動、加速、減速以及正反轉(zhuǎn)。
關(guān)鍵字:伺服驅(qū)動器;直接轉(zhuǎn)矩控制;空間電壓矢量;滑模觀測器; 數(shù)字信號處理器;智能功率模塊
Abstract
With the development of power electronics technology, modern control theory and digital signal processor, Servo System has been widely used in industrial production. As we know, the core of the servo system is servo motor and servo drivers. Some big companies have had relatively servo products. But in our country, for high performance servo products, we still depend on imports. In this situation, this thesis gave the research and design on the servo drivers based on the PMSM.
The structure of this thesis was divided into two parts, theory research and construction of experimental platform. Specific content is as following.
First of all, through the study of PMSM mathematical model, I have made the research on both the traditional DTC that was based on switching table and the SVM-DTC that was based on the SVPWM. According to decrease the flux and torque ripple, using space voltage vector to replace the switching table to improve system’s dynamic, static performance. The simulation result also showed that the strategy based on SVM-DTC could apparently decrease the flux and torque ripple, what’s more the waveform of stator current was smooth.
Then, I’ve made an analysis on the scheme of sensorless speed control. Based on the advantage and disadvantage between kinds of arithmetic, I accomplished sliding model observer in SVM-DTC. In order to solve the speed’s ripple and position error, I added extension kalman filter instead of common filter in the model. The simulation showed that adding EKF could decrease the speed’s ripple and improve the accuracy of rotor’s position.
At last, I accomplished to construct the platform of servo drivers, including hardware and software. The main work in the hardware was to design and accomplish two modules. One module is about core control based on DSP, the other is about power driving based on IPM. The control module was mainly about the minimum system of DSP. The power drive module was mainly about IPM’s surrounding circuit, current and voltage collecting circuit, optically coupled isolation circuit, protect circuit and so on. The software was designed in modules, which including main program and interrupt subprogram. The whole software has been done in CCS2.0. Through compiling and building, I have finished motor start, speed up, slow down and rotate in both counterclockwise direction and clockwise direction.
Key words: Servo drivers; direct torque control; Space Vector Pulse Width Modulation; Sliding Model Observer; Digital Signal Processor; Intelligent Power Module
目錄
摘 要 I
Abstract III
第1章 緒論 1
1.1選題的理論意義和實用價值 1
1.2 本課題國內(nèi)、外研究現(xiàn)狀與發(fā)展趨勢 2
1.2.1 伺服驅(qū)動控制器的發(fā)展 2
1.2.2 伺服驅(qū)動邏輯控制芯片的發(fā)展 3
1.2.3 交流調(diào)速理論研究的發(fā)展 3
1.3 交流伺服的性能及特點要求 6
1.4 論文研究的主要內(nèi)容 6
第2章 永磁同步電動機的結(jié)構(gòu)和數(shù)學模型 8
2.1 永磁同步電動機的結(jié)構(gòu)和分類 8
2.2 永磁同步電機的數(shù)學模型 9
2.3 坐標變換 11
2.3.1 三相靜止坐標系到兩相靜止坐標的坐標變換 11
2.3.2 兩相靜止坐標系到兩相旋轉(zhuǎn)坐標系的坐標變換 12
2.3.3 三相靜止坐標系到兩相旋轉(zhuǎn)坐標系的坐標變換 12
2.4 本章小結(jié) 13
第3章 永磁同步電動機直接轉(zhuǎn)矩控制策略的實現(xiàn) 14
3.1 引言 14
3.2 PMSM DTC系統(tǒng) 14
3.2.1 空間電壓矢量 15
3.2.2 DTC中磁鏈和轉(zhuǎn)矩控制 17
3.2.3 PMSM直接轉(zhuǎn)矩控制系統(tǒng)結(jié)構(gòu) 18
3.3 PMSM DTC的仿真研究 22
3.3.1 PMSM直接轉(zhuǎn)矩控制系統(tǒng)的仿真模型 22
3.3.2 仿真結(jié)果分析 22
3.4 本章小結(jié) 27
第4章 基于預測空間電壓矢量調(diào)制技術(shù)的PMSM DTC控制系統(tǒng) 28
4.1 引言 28
4.2 空間電壓矢..
隨著電力電子技術(shù)、現(xiàn)代控制理論和數(shù)字信號處理器的發(fā)展,伺服系統(tǒng)在工業(yè)控制中獲得了越來越多的應用。伺服系統(tǒng)中,伺服電機和伺服驅(qū)動器組成了伺服系統(tǒng)的核心。國外已經(jīng)有了相對成熟的伺服產(chǎn)品,而國內(nèi)對于高性能的伺服產(chǎn)品的需求依然以進口為主,在這種背景下,本文研究并設計了基于永磁同步電機的伺服驅(qū)動器。
本文結(jié)構(gòu)分為兩部分:理論研究和構(gòu)建實驗平臺。具體內(nèi)容如下:
1、通過對永磁同步電動機的數(shù)學建模,分別研究了基于開關(guān)表的常規(guī)DTC和基于空間電壓矢量的SVM-DTC。針對常規(guī)DTC中轉(zhuǎn)矩磁鏈脈動大的缺點,通過引入預測空間電壓矢量來代替開關(guān)表,提升系統(tǒng)的動、靜態(tài)性能。仿真結(jié)果表明,基于SVM-DTC的控制策略,磁鏈和轉(zhuǎn)矩脈動明顯減小,定子電流波形平滑。
2、分析了永磁同步電機的無速度傳感器控制方案。在比較了各種控制算法優(yōu)缺點的基礎(chǔ)上,實現(xiàn)了滑模觀測器。針對滑模觀測器估計轉(zhuǎn)速抖動和轉(zhuǎn)子位置偏差的問題,本文引入擴展的卡爾曼濾波器代替模型中的低通濾波器。仿真結(jié)果表明:引入的擴展卡爾曼濾波器能有效降低滑模觀測器中估計轉(zhuǎn)速的抖動,提高轉(zhuǎn)子位置的估計精度。
3、構(gòu)建了伺服驅(qū)動器的軟硬件實驗平臺。硬件部分主要設計并完成了基于DSP核心控制模塊和基于IPM的功率驅(qū)動模塊。核心控制模塊主要完成了DSP的最小系統(tǒng)設計;功率驅(qū)動模塊主要完成了IPM的外圍電路、電流電壓采樣電路、光耦隔離電路、保護電路等。軟件部分采用模塊化的設計,包括主程序和各中斷子程序。在CCS2.0的環(huán)境下進行編譯和調(diào)試,最終實現(xiàn)了電機的啟動、加速、減速以及正反轉(zhuǎn)。
關(guān)鍵字:伺服驅(qū)動器;直接轉(zhuǎn)矩控制;空間電壓矢量;滑模觀測器; 數(shù)字信號處理器;智能功率模塊
Abstract
With the development of power electronics technology, modern control theory and digital signal processor, Servo System has been widely used in industrial production. As we know, the core of the servo system is servo motor and servo drivers. Some big companies have had relatively servo products. But in our country, for high performance servo products, we still depend on imports. In this situation, this thesis gave the research and design on the servo drivers based on the PMSM.
The structure of this thesis was divided into two parts, theory research and construction of experimental platform. Specific content is as following.
First of all, through the study of PMSM mathematical model, I have made the research on both the traditional DTC that was based on switching table and the SVM-DTC that was based on the SVPWM. According to decrease the flux and torque ripple, using space voltage vector to replace the switching table to improve system’s dynamic, static performance. The simulation result also showed that the strategy based on SVM-DTC could apparently decrease the flux and torque ripple, what’s more the waveform of stator current was smooth.
Then, I’ve made an analysis on the scheme of sensorless speed control. Based on the advantage and disadvantage between kinds of arithmetic, I accomplished sliding model observer in SVM-DTC. In order to solve the speed’s ripple and position error, I added extension kalman filter instead of common filter in the model. The simulation showed that adding EKF could decrease the speed’s ripple and improve the accuracy of rotor’s position.
At last, I accomplished to construct the platform of servo drivers, including hardware and software. The main work in the hardware was to design and accomplish two modules. One module is about core control based on DSP, the other is about power driving based on IPM. The control module was mainly about the minimum system of DSP. The power drive module was mainly about IPM’s surrounding circuit, current and voltage collecting circuit, optically coupled isolation circuit, protect circuit and so on. The software was designed in modules, which including main program and interrupt subprogram. The whole software has been done in CCS2.0. Through compiling and building, I have finished motor start, speed up, slow down and rotate in both counterclockwise direction and clockwise direction.
Key words: Servo drivers; direct torque control; Space Vector Pulse Width Modulation; Sliding Model Observer; Digital Signal Processor; Intelligent Power Module
目錄
摘 要 I
Abstract III
第1章 緒論 1
1.1選題的理論意義和實用價值 1
1.2 本課題國內(nèi)、外研究現(xiàn)狀與發(fā)展趨勢 2
1.2.1 伺服驅(qū)動控制器的發(fā)展 2
1.2.2 伺服驅(qū)動邏輯控制芯片的發(fā)展 3
1.2.3 交流調(diào)速理論研究的發(fā)展 3
1.3 交流伺服的性能及特點要求 6
1.4 論文研究的主要內(nèi)容 6
第2章 永磁同步電動機的結(jié)構(gòu)和數(shù)學模型 8
2.1 永磁同步電動機的結(jié)構(gòu)和分類 8
2.2 永磁同步電機的數(shù)學模型 9
2.3 坐標變換 11
2.3.1 三相靜止坐標系到兩相靜止坐標的坐標變換 11
2.3.2 兩相靜止坐標系到兩相旋轉(zhuǎn)坐標系的坐標變換 12
2.3.3 三相靜止坐標系到兩相旋轉(zhuǎn)坐標系的坐標變換 12
2.4 本章小結(jié) 13
第3章 永磁同步電動機直接轉(zhuǎn)矩控制策略的實現(xiàn) 14
3.1 引言 14
3.2 PMSM DTC系統(tǒng) 14
3.2.1 空間電壓矢量 15
3.2.2 DTC中磁鏈和轉(zhuǎn)矩控制 17
3.2.3 PMSM直接轉(zhuǎn)矩控制系統(tǒng)結(jié)構(gòu) 18
3.3 PMSM DTC的仿真研究 22
3.3.1 PMSM直接轉(zhuǎn)矩控制系統(tǒng)的仿真模型 22
3.3.2 仿真結(jié)果分析 22
3.4 本章小結(jié) 27
第4章 基于預測空間電壓矢量調(diào)制技術(shù)的PMSM DTC控制系統(tǒng) 28
4.1 引言 28
4.2 空間電壓矢..