太陽能電池減反膜的數(shù)值模擬.zip
太陽能電池減反膜的數(shù)值模擬,包括開題報(bào)告,任務(wù)書,ppt,翻譯原文和譯文中文摘要i關(guān)鍵詞iabstractikey wordsii1 引言11.1、研究起因11.2、太陽能電池減發(fā)射研究綜述11.3、研究目的71.4、論文結(jié)構(gòu)72 減反射原理及光學(xué)參數(shù)72.1、減反射膜的基本原理72.2、光學(xué)參數(shù)83 fdtd數(shù)值計(jì)算算法和程序設(shè)計(jì)93.1、fd...
該文檔為壓縮文件,包含的文件列表如下:
內(nèi)容介紹
原文檔由會員 牛奶咖啡 發(fā)布
包括開題報(bào)告,任務(wù)書,ppt,翻譯原文和譯文
中文摘要 I
關(guān)鍵詞 I
Abstract I
key words II
1 引言 1
1.1、研究起因 1
1.2、太陽能電池減發(fā)射研究綜述 1
1.3、研究目的 7
1.4、論文結(jié)構(gòu) 7
2 減反射原理及光學(xué)參數(shù) 7
2.1、減反射膜的基本原理 7
2.2、光學(xué)參數(shù) 8
3 FDTD數(shù)值計(jì)算算法和程序設(shè)計(jì) 9
3.1、FDTD簡介 9
3.2、穩(wěn)定性條件 14
3.3、數(shù)值計(jì)算的基本過程 14
4 微、納減反射模型的數(shù)值模擬 14
4.1、模擬參數(shù)的設(shè)置以及誤差分析 14
4.2、微米級模型 15
4.3、納米級模型 16
4.4、微、納數(shù)值模擬 18
5 結(jié)論與展望 33
參考文獻(xiàn) 34
致謝 37
太陽能電池減反膜的數(shù)值模擬
中文摘要
太陽能電池的減反射技術(shù)能大大提高電池的光電轉(zhuǎn)換效率,因此一直備受關(guān)注。減反射技術(shù)多種多樣,目的都是為了得到更低的反射率和更高的透過率。最近幾年,對納米陷光結(jié)構(gòu)的研究甚是火熱。本文主要利用有限時(shí)域差分方法(FDTD),從最基本的拋光硅片出發(fā)探索各種陷光措施的實(shí)際效果,有減反射薄膜技術(shù)、表面制絨織構(gòu)化技術(shù)、表面納米陷光技術(shù)(ZnO陣列),同時(shí)也進(jìn)行了不同技術(shù)之間的對比。研究發(fā)現(xiàn):SiNx薄膜的減反增透效果明顯,且優(yōu)化的雙層SiNx效果更佳;制絨確實(shí)大大降低了硅片的反射率,而且合理設(shè)計(jì)金字塔之間的間距可以進(jìn)一步提高抗反射能力;納米陣列的反射率受實(shí)際填充率和最小周期性單元的尺度的影響。對于納米陷光結(jié)構(gòu)最關(guān)鍵的一點(diǎn)是:低的反射率不一定會擁有高的透過率,結(jié)構(gòu)本身對光存在吸收,因此合理協(xié)調(diào)結(jié)構(gòu)從而使電池效率最佳是我們正真應(yīng)該關(guān)注的問題。本次研究發(fā)現(xiàn),經(jīng)過優(yōu)化的蛾眼狀ZnO納米陣列的平均反射率和平均透過率均達(dá)到最佳狀態(tài),此時(shí)結(jié)構(gòu)幾何參數(shù)為:高度為200nm,底面直徑為50nm,間距為0nm時(shí)。此時(shí):反射率(最低):8.0185%,透過率(最高):87.9598%。
關(guān)鍵詞: 減反射、SiNx薄膜、制絨、陷光、ZnO納米陣列、平均反射率、平均透過率
Abstract
Because of antireflective technology can greatly improve the photoelectric conversion efficiency of the solar cell, it has been a concern. All kinds of antireflective technology are aimed at obtaining lower reflectance and higher transmittance. Recent years, the nanotechnology in the field of light trapping is very hot. In this paper, the finite-difference-time-domain ( FDTD ) is used to find the most desired structure. The study starting from the most basic structure: polishing silicon to explore the actual effect of some kings of light-trapping technique, including: SiNx film technology, surface texturing technology, nanotechnology ( the ZnO nanorod arrays ), and the contrast between the different technologies. Study found the antireflection effect of single-layered SiNx:H films is obvious, and the double-layered SiNx film is better. Surface texturing technology indeed greatly reduces the reflectivity of the wafer, and well control the distance between the pyramids can further improve antireflective ability. The reflectivity of nano arrays changes with fill rate and the unit scale of minimum periodic. For nano light trapping structure the most crucial point is: the low reflectivity may or may not have a high transmittance of light , nano-structure itself have a certain light absorption, reasonable coordination structures so that the battery at its best is which should be concerned. The study found that after the optimization moth-eye shape ZnO nanorod arrays obtain the best reflectance and transmittance. Its reflectivity and transmittance are 8.0185% , 87.9598% respectively. The geometry parameters is as follow:
Height: 200nm
Ground diameter: 50nm
Distance: 0nm .
key words: Antireflection、Silicon nitride film、Texturing 、Light trapping 、ZnO nanorod arrays、The average reflectivity、The average transmittance
中文摘要 I
關(guān)鍵詞 I
Abstract I
key words II
1 引言 1
1.1、研究起因 1
1.2、太陽能電池減發(fā)射研究綜述 1
1.3、研究目的 7
1.4、論文結(jié)構(gòu) 7
2 減反射原理及光學(xué)參數(shù) 7
2.1、減反射膜的基本原理 7
2.2、光學(xué)參數(shù) 8
3 FDTD數(shù)值計(jì)算算法和程序設(shè)計(jì) 9
3.1、FDTD簡介 9
3.2、穩(wěn)定性條件 14
3.3、數(shù)值計(jì)算的基本過程 14
4 微、納減反射模型的數(shù)值模擬 14
4.1、模擬參數(shù)的設(shè)置以及誤差分析 14
4.2、微米級模型 15
4.3、納米級模型 16
4.4、微、納數(shù)值模擬 18
5 結(jié)論與展望 33
參考文獻(xiàn) 34
致謝 37
太陽能電池減反膜的數(shù)值模擬
中文摘要
太陽能電池的減反射技術(shù)能大大提高電池的光電轉(zhuǎn)換效率,因此一直備受關(guān)注。減反射技術(shù)多種多樣,目的都是為了得到更低的反射率和更高的透過率。最近幾年,對納米陷光結(jié)構(gòu)的研究甚是火熱。本文主要利用有限時(shí)域差分方法(FDTD),從最基本的拋光硅片出發(fā)探索各種陷光措施的實(shí)際效果,有減反射薄膜技術(shù)、表面制絨織構(gòu)化技術(shù)、表面納米陷光技術(shù)(ZnO陣列),同時(shí)也進(jìn)行了不同技術(shù)之間的對比。研究發(fā)現(xiàn):SiNx薄膜的減反增透效果明顯,且優(yōu)化的雙層SiNx效果更佳;制絨確實(shí)大大降低了硅片的反射率,而且合理設(shè)計(jì)金字塔之間的間距可以進(jìn)一步提高抗反射能力;納米陣列的反射率受實(shí)際填充率和最小周期性單元的尺度的影響。對于納米陷光結(jié)構(gòu)最關(guān)鍵的一點(diǎn)是:低的反射率不一定會擁有高的透過率,結(jié)構(gòu)本身對光存在吸收,因此合理協(xié)調(diào)結(jié)構(gòu)從而使電池效率最佳是我們正真應(yīng)該關(guān)注的問題。本次研究發(fā)現(xiàn),經(jīng)過優(yōu)化的蛾眼狀ZnO納米陣列的平均反射率和平均透過率均達(dá)到最佳狀態(tài),此時(shí)結(jié)構(gòu)幾何參數(shù)為:高度為200nm,底面直徑為50nm,間距為0nm時(shí)。此時(shí):反射率(最低):8.0185%,透過率(最高):87.9598%。
關(guān)鍵詞: 減反射、SiNx薄膜、制絨、陷光、ZnO納米陣列、平均反射率、平均透過率
Abstract
Because of antireflective technology can greatly improve the photoelectric conversion efficiency of the solar cell, it has been a concern. All kinds of antireflective technology are aimed at obtaining lower reflectance and higher transmittance. Recent years, the nanotechnology in the field of light trapping is very hot. In this paper, the finite-difference-time-domain ( FDTD ) is used to find the most desired structure. The study starting from the most basic structure: polishing silicon to explore the actual effect of some kings of light-trapping technique, including: SiNx film technology, surface texturing technology, nanotechnology ( the ZnO nanorod arrays ), and the contrast between the different technologies. Study found the antireflection effect of single-layered SiNx:H films is obvious, and the double-layered SiNx film is better. Surface texturing technology indeed greatly reduces the reflectivity of the wafer, and well control the distance between the pyramids can further improve antireflective ability. The reflectivity of nano arrays changes with fill rate and the unit scale of minimum periodic. For nano light trapping structure the most crucial point is: the low reflectivity may or may not have a high transmittance of light , nano-structure itself have a certain light absorption, reasonable coordination structures so that the battery at its best is which should be concerned. The study found that after the optimization moth-eye shape ZnO nanorod arrays obtain the best reflectance and transmittance. Its reflectivity and transmittance are 8.0185% , 87.9598% respectively. The geometry parameters is as follow:
Height: 200nm
Ground diameter: 50nm
Distance: 0nm .
key words: Antireflection、Silicon nitride film、Texturing 、Light trapping 、ZnO nanorod arrays、The average reflectivity、The average transmittance