[外文翻譯]空間鋼結(jié)構(gòu)的非線性分析.rar
[外文翻譯]空間鋼結(jié)構(gòu)的非線性分析,/nonlinear analysis of steel space structures內(nèi)包含中文翻譯和英文原文,內(nèi)容完善,建議下載閱覽。①中文頁數(shù)6中文字數(shù)2505②英文頁數(shù)7英文字數(shù)1556③ 摘要 隨著二階非線性分析大跨空間結(jié)構(gòu)理念的提出,對兩種類型的非線性、材料和幾何分析中,...
該文檔為壓縮文件,包含的文件列表如下:
內(nèi)容介紹
原文檔由會員 鄭軍 發(fā)布
[外文翻譯]空間鋼結(jié)構(gòu)的非線性分析/NONLINEAR ANALYSIS OF STEEL SPACE STRUCTURES
內(nèi)包含中文翻譯和英文原文,內(nèi)容完善,建議下載閱覽。
①中文頁數(shù)6
中文字數(shù)2505
②英文頁數(shù)7
英文字數(shù)1556
③ 摘要
隨著二階非線性分析大跨空間結(jié)構(gòu)理念的提出,對兩種類型的非線性、材料和幾何分析中,幾何非線性已被考慮,非線性分析才能被認可。同時需要假設鋼結(jié)構(gòu)的材料為線彈性。在幾何非線性的影響下,所產(chǎn)生不穩(wěn)定的軸向力、彎曲變形產(chǎn)生的彎矩,以及有限制的偏移量均包括在內(nèi)。為了達到這個目的,制定剛度矩陣修正后的變形狀態(tài)和動態(tài)矩陣與幾何矩陣所需的切線剛度矩陣,這樣才能更好的去分析。在這些矩陣中使用分析方法,,通過牛頓迭代法進行位移法來實現(xiàn)。在迭代過程中,考慮幾何變化是重復,直到最后結(jié)果的變化已經(jīng)微乎其微,可以看作是達到了平衡,這樣做的誤差很小,能滿足要求。通過這樣的方程進行求解的方法是實用的。與此同時,平衡方程求解Cholesky的方法就是在這種結(jié)論的基礎上給出的,從而進一步說明了這種分析方法的可行性。
A second-order nonlinear analysis of steel space structures has been presented. Of the two types of nonlinearities, material and geometric, only geo-metric nonlinearity has been considered. The material of the structure steel has been assumed to be linearly elastic. In geometric nonlinearity, the effects of instability produced by axial forces, the bowing of the deformed members, and finite deflections have all been included. For this purpose, the secant stiffness matrix in the deformed state and the modified kinematic matrices along with the geometric matrix necessary for formulating the tangent stiffness matrix, have been developed. These matrices are used in the analysis, which is carried out by the displacement method through an iterative-incremental procedure based on Newton-Raphson technique. The iterations that take into account the latest geometry are repeated until the unbalanced loads become negligible and equilibrium is obtained. The equilibrium equations are solved by Cholesky's method. Results of an illustrative example and conclusion based on them are also given.
④關鍵字 鋼結(jié)構(gòu)/STEEL SPACE STRU
⑥參考文獻
Gere, J. M., and Weaver, W., Jr. (1965). Analysis of plane frames. D. Van Nostrand Company, Princeton, N.J.
Harrison, H. B. (1973). "Computer methods in structural analysis." Prentice-Hall Inc., Englewood Cliffs, NJ.
Johnson, D., and Brotten, D. M. (1966). "A finite deflection analysis for space structures." Proc. Int. Conf. on Space Structures, Dept. of Civ. Engrg., Univ. of Surrey, Surrey, England.
Majid, K. I. Non-linear structures (matrix methods of analysis and design by computers). Butterworth Co. Ltd., London, England.
Oran, C. (1973). "Tangent stiffness in space frames." J. Struct. Div., ASCE, 99(6), 987-1002.
Powell, G. H. (1969). "Theory of non-linear elastic structures." J. Struct. Div., ASCE, 95(12), 2687-2701.
Ramchandra. (1981). "Non-linear elastic-plastic analysis of skeletal steel structures," thesis presented to the University of Roorkee, at Roorkee, India, in partial ful-fillment of the requirements for the degree of Doctor of Philosophy.
Saafan, S. A. (1963). "Non-linear behaviour of structural plane frames." J. Struct. Div., ASCE, 89(4), 557-579.
內(nèi)包含中文翻譯和英文原文,內(nèi)容完善,建議下載閱覽。
①中文頁數(shù)6
中文字數(shù)2505
②英文頁數(shù)7
英文字數(shù)1556
③ 摘要
隨著二階非線性分析大跨空間結(jié)構(gòu)理念的提出,對兩種類型的非線性、材料和幾何分析中,幾何非線性已被考慮,非線性分析才能被認可。同時需要假設鋼結(jié)構(gòu)的材料為線彈性。在幾何非線性的影響下,所產(chǎn)生不穩(wěn)定的軸向力、彎曲變形產(chǎn)生的彎矩,以及有限制的偏移量均包括在內(nèi)。為了達到這個目的,制定剛度矩陣修正后的變形狀態(tài)和動態(tài)矩陣與幾何矩陣所需的切線剛度矩陣,這樣才能更好的去分析。在這些矩陣中使用分析方法,,通過牛頓迭代法進行位移法來實現(xiàn)。在迭代過程中,考慮幾何變化是重復,直到最后結(jié)果的變化已經(jīng)微乎其微,可以看作是達到了平衡,這樣做的誤差很小,能滿足要求。通過這樣的方程進行求解的方法是實用的。與此同時,平衡方程求解Cholesky的方法就是在這種結(jié)論的基礎上給出的,從而進一步說明了這種分析方法的可行性。
A second-order nonlinear analysis of steel space structures has been presented. Of the two types of nonlinearities, material and geometric, only geo-metric nonlinearity has been considered. The material of the structure steel has been assumed to be linearly elastic. In geometric nonlinearity, the effects of instability produced by axial forces, the bowing of the deformed members, and finite deflections have all been included. For this purpose, the secant stiffness matrix in the deformed state and the modified kinematic matrices along with the geometric matrix necessary for formulating the tangent stiffness matrix, have been developed. These matrices are used in the analysis, which is carried out by the displacement method through an iterative-incremental procedure based on Newton-Raphson technique. The iterations that take into account the latest geometry are repeated until the unbalanced loads become negligible and equilibrium is obtained. The equilibrium equations are solved by Cholesky's method. Results of an illustrative example and conclusion based on them are also given.
④關鍵字 鋼結(jié)構(gòu)/STEEL SPACE STRU
⑥參考文獻
Gere, J. M., and Weaver, W., Jr. (1965). Analysis of plane frames. D. Van Nostrand Company, Princeton, N.J.
Harrison, H. B. (1973). "Computer methods in structural analysis." Prentice-Hall Inc., Englewood Cliffs, NJ.
Johnson, D., and Brotten, D. M. (1966). "A finite deflection analysis for space structures." Proc. Int. Conf. on Space Structures, Dept. of Civ. Engrg., Univ. of Surrey, Surrey, England.
Majid, K. I. Non-linear structures (matrix methods of analysis and design by computers). Butterworth Co. Ltd., London, England.
Oran, C. (1973). "Tangent stiffness in space frames." J. Struct. Div., ASCE, 99(6), 987-1002.
Powell, G. H. (1969). "Theory of non-linear elastic structures." J. Struct. Div., ASCE, 95(12), 2687-2701.
Ramchandra. (1981). "Non-linear elastic-plastic analysis of skeletal steel structures," thesis presented to the University of Roorkee, at Roorkee, India, in partial ful-fillment of the requirements for the degree of Doctor of Philosophy.
Saafan, S. A. (1963). "Non-linear behaviour of structural plane frames." J. Struct. Div., ASCE, 89(4), 557-579.