低濃度瓦斯水合物生成動力學(工學碩士論文).doc
約70頁DOC格式手機打開展開
低濃度瓦斯水合物生成動力學(工學碩士論文),摘要低濃度瓦斯安全輸送和利用技術缺乏等因素限制了礦井瓦斯抽采利用,造成了環(huán)境污染和資源浪費,水合物技術為充分利用瓦斯資源提供了新的嘗試。瓦斯水合固化儲運技術工業(yè)化的關鍵是水合物的快速穩(wěn)定生成,因此對低濃度瓦斯水合物生成動力學及其促進劑研究具有非常重要的意義。本文利用可視化水合物裝置,首先進行了低濃度瓦斯在純水中水合物生...
內容介紹
此文檔由會員 白癡學東西 發(fā)布
摘 要
低濃度瓦斯安全輸送和利用技術缺乏等因素限制了礦井瓦斯抽采利用,造成了環(huán)境污染和資源浪費,水合物技術為充分利用瓦斯資源提供了新的嘗試。瓦斯水合固化儲運技術工業(yè)化的關鍵是水合物的快速穩(wěn)定生成,因此對低濃度瓦斯水合物生成動力學及其促進劑研究具有非常重要的意義。
本文利用可視化水合物裝置,首先進行了低濃度瓦斯在純水中水合物生成動力學的3組實驗,結果表明在無促進劑的靜止體系中,水合物誘導時間較長,水合物誘導時間長達700min,且水合物生長極其緩慢。
進而研究了添加SDS的9組實驗體系中低濃度瓦斯水合物生成動力學實驗,結果發(fā)現(xiàn)SDS顯著縮短了水合物生成宏觀誘導時間,提高了水合物生長速率,誘導時間最短為30min,生長速率最大可達3.395×10-5m3•h-1。
接著研究了添加THF的9組實驗體系及其與SDS復配的3組實驗體系中低濃度瓦斯水合物生成動力學實驗,結果表明THF改善了低濃度瓦斯水合物生成熱力學參數(shù),縮短了水合物生成的宏觀誘導時間,加快了水合物生長速率,水合物生成誘導時間最短僅為14 min,最快生長速率為2.847×10-5 m3•h-1。THF-SDS復配體系中水合物生成誘導時間最短為31 min,水合物的生長速率比同比濃度的單一促進劑中水合物的生長速率大。
本文針對促進劑對低濃度瓦斯水合物生成動力學的影響,共進行了24組實驗,獲得了大量的實驗數(shù)據(jù)和圖像資料,得到了SDS、THF和THF-SDS促進劑體系對低濃度瓦斯水合物生成動力學的影響規(guī)律,為瓦斯固化儲運在技術上實現(xiàn)工業(yè)化應用奠定了基礎。
該論文有圖39幅,表11個,參考文獻82篇。
關鍵詞:低濃度瓦斯;水合物;生成動力學;四氫呋喃;十二烷基硫酸鈉
Abstract
The limitation of mine gas extraction using which caused environment pollution and wasting of resources is due to the low gas safety transportation, insufficiency of using technology and so on. Hydration technology provides a new attempt on fully using gas resources. The key to the industrialization of gas hydration curing storage technology is the rapid and stable generation of hydration, which has extremely significance for generating dynamics of low concentration of gas hydration.
This paper makes use of visualization devices. Firstly, it carries out three experiments about hydration generation dynamics of low concentration gas in pure water. The results of the experiments show that the hydrate induction time is so long, which can reach as long as 700min. The results also show that the hydrate formation rate is so slow. These experiments are carried out under static system without accelerator.
Secondly, it carries out low-concentration gas hydration generation kinetics about 9 experiments which add SDS. The consequence is that SDS shortens the macro induction time of hydrate formation and it also improves hydrate formation rate. The shortest induction time is 30min and the biggest formation rate is 3.395×10-5m3•h-1.
Thirdly, it carries out researches about low-concentration gas hydrate formation kinetics experiments of 9 experimental systems which add THF and three groups of experimental system with SDS mixed with. The results show that THF improves the thermodynamic parameters of low concentration of gas hydrate formation, and it also shortens the macro inducement time of hydration formation, and accelerates the hydrate formation rate. The shortest hydrate formation inducement time is 14 min, and the fastest growth rate is 2.847×10-5 m3•h-1. The shortest hydrate formation induction time is 31 min under the THF-SDS compounded system. The formation rate of hydrate is faster than that has single accelerator in the same proportion of concentration.
This paper focuses on the influences of the accelerator on low concentration gas hydration generating kinetics. It carries out 24 groups of experiments and it also gets lots of experimental data and image materials. At the same time, this paper gets the influencial rules of SDS, THF and THF-SDS accelerator system of low-concentration gas hydration generating kinetics. It establishes a foundation for the application industrialization of gas storage curing in technology.
The paper has thirty-nine figures, eleven tables and eighty-two references.
Keywords: low-concentration gas; hydrate; formation kinetics; tetrahydrofuran; sodium dodecyl sulfate
目 錄
摘要 1
Abstract II
1 緒論 1
1.1 研究背景 1
1.2 目的和意義 1
1.3 主要研究內容及特色 2
1.3.1 研究內容 2
1.3.2 研究特色 3
1.4 文章結構 3
2 文獻綜述 5
2.1 氣體水合物概述 5
2.1.1 基本概念 5
2.1.2 結構特征 5
2.1.3 物化性質 7
2.2 水合物生成動力學研究進展 10
2.3 促進劑對瓦斯水合物影響研究進展 11
2.4 本章小結 12
3 理論基礎 13
3.1 水合物生成動力學理論 13
3.1.1 誘導時間 13
3.1.2 晶體成核 14
3.1.3 晶體生長 15
3.2 表面活性劑對水合物生成影響 17
3.2.1 表面活性劑概述 17
3.2.2 表面活性劑對水合物成核階段的影響 18
3.2.3 表面活性劑對水合物生長速率的改善 18
3.2.4 表面活性劑作用下水合物生成誘導時間模型 19
3.3 本章小結 19
4 瓦斯水合物生成動力學實驗系統(tǒng) 20
4.1 實驗系統(tǒng) 20
4.1.1 可視高壓反應釜 20
4.1.2 溫度調控與測定系統(tǒng) 21
4.1.3 壓力調控與測定系統(tǒng) 22
4.1.4 數(shù)字圖像攝錄系統(tǒng) 23
4.1.5 實驗數(shù)據(jù)采集系統(tǒng) 23
4.1.6 氣相色譜分析系統(tǒng) 24..
低濃度瓦斯安全輸送和利用技術缺乏等因素限制了礦井瓦斯抽采利用,造成了環(huán)境污染和資源浪費,水合物技術為充分利用瓦斯資源提供了新的嘗試。瓦斯水合固化儲運技術工業(yè)化的關鍵是水合物的快速穩(wěn)定生成,因此對低濃度瓦斯水合物生成動力學及其促進劑研究具有非常重要的意義。
本文利用可視化水合物裝置,首先進行了低濃度瓦斯在純水中水合物生成動力學的3組實驗,結果表明在無促進劑的靜止體系中,水合物誘導時間較長,水合物誘導時間長達700min,且水合物生長極其緩慢。
進而研究了添加SDS的9組實驗體系中低濃度瓦斯水合物生成動力學實驗,結果發(fā)現(xiàn)SDS顯著縮短了水合物生成宏觀誘導時間,提高了水合物生長速率,誘導時間最短為30min,生長速率最大可達3.395×10-5m3•h-1。
接著研究了添加THF的9組實驗體系及其與SDS復配的3組實驗體系中低濃度瓦斯水合物生成動力學實驗,結果表明THF改善了低濃度瓦斯水合物生成熱力學參數(shù),縮短了水合物生成的宏觀誘導時間,加快了水合物生長速率,水合物生成誘導時間最短僅為14 min,最快生長速率為2.847×10-5 m3•h-1。THF-SDS復配體系中水合物生成誘導時間最短為31 min,水合物的生長速率比同比濃度的單一促進劑中水合物的生長速率大。
本文針對促進劑對低濃度瓦斯水合物生成動力學的影響,共進行了24組實驗,獲得了大量的實驗數(shù)據(jù)和圖像資料,得到了SDS、THF和THF-SDS促進劑體系對低濃度瓦斯水合物生成動力學的影響規(guī)律,為瓦斯固化儲運在技術上實現(xiàn)工業(yè)化應用奠定了基礎。
該論文有圖39幅,表11個,參考文獻82篇。
關鍵詞:低濃度瓦斯;水合物;生成動力學;四氫呋喃;十二烷基硫酸鈉
Abstract
The limitation of mine gas extraction using which caused environment pollution and wasting of resources is due to the low gas safety transportation, insufficiency of using technology and so on. Hydration technology provides a new attempt on fully using gas resources. The key to the industrialization of gas hydration curing storage technology is the rapid and stable generation of hydration, which has extremely significance for generating dynamics of low concentration of gas hydration.
This paper makes use of visualization devices. Firstly, it carries out three experiments about hydration generation dynamics of low concentration gas in pure water. The results of the experiments show that the hydrate induction time is so long, which can reach as long as 700min. The results also show that the hydrate formation rate is so slow. These experiments are carried out under static system without accelerator.
Secondly, it carries out low-concentration gas hydration generation kinetics about 9 experiments which add SDS. The consequence is that SDS shortens the macro induction time of hydrate formation and it also improves hydrate formation rate. The shortest induction time is 30min and the biggest formation rate is 3.395×10-5m3•h-1.
Thirdly, it carries out researches about low-concentration gas hydrate formation kinetics experiments of 9 experimental systems which add THF and three groups of experimental system with SDS mixed with. The results show that THF improves the thermodynamic parameters of low concentration of gas hydrate formation, and it also shortens the macro inducement time of hydration formation, and accelerates the hydrate formation rate. The shortest hydrate formation inducement time is 14 min, and the fastest growth rate is 2.847×10-5 m3•h-1. The shortest hydrate formation induction time is 31 min under the THF-SDS compounded system. The formation rate of hydrate is faster than that has single accelerator in the same proportion of concentration.
This paper focuses on the influences of the accelerator on low concentration gas hydration generating kinetics. It carries out 24 groups of experiments and it also gets lots of experimental data and image materials. At the same time, this paper gets the influencial rules of SDS, THF and THF-SDS accelerator system of low-concentration gas hydration generating kinetics. It establishes a foundation for the application industrialization of gas storage curing in technology.
The paper has thirty-nine figures, eleven tables and eighty-two references.
Keywords: low-concentration gas; hydrate; formation kinetics; tetrahydrofuran; sodium dodecyl sulfate
目 錄
摘要 1
Abstract II
1 緒論 1
1.1 研究背景 1
1.2 目的和意義 1
1.3 主要研究內容及特色 2
1.3.1 研究內容 2
1.3.2 研究特色 3
1.4 文章結構 3
2 文獻綜述 5
2.1 氣體水合物概述 5
2.1.1 基本概念 5
2.1.2 結構特征 5
2.1.3 物化性質 7
2.2 水合物生成動力學研究進展 10
2.3 促進劑對瓦斯水合物影響研究進展 11
2.4 本章小結 12
3 理論基礎 13
3.1 水合物生成動力學理論 13
3.1.1 誘導時間 13
3.1.2 晶體成核 14
3.1.3 晶體生長 15
3.2 表面活性劑對水合物生成影響 17
3.2.1 表面活性劑概述 17
3.2.2 表面活性劑對水合物成核階段的影響 18
3.2.3 表面活性劑對水合物生長速率的改善 18
3.2.4 表面活性劑作用下水合物生成誘導時間模型 19
3.3 本章小結 19
4 瓦斯水合物生成動力學實驗系統(tǒng) 20
4.1 實驗系統(tǒng) 20
4.1.1 可視高壓反應釜 20
4.1.2 溫度調控與測定系統(tǒng) 21
4.1.3 壓力調控與測定系統(tǒng) 22
4.1.4 數(shù)字圖像攝錄系統(tǒng) 23
4.1.5 實驗數(shù)據(jù)采集系統(tǒng) 23
4.1.6 氣相色譜分析系統(tǒng) 24..