畢業(yè)論文 公平席位分配.doc
約40頁(yè)DOC格式手機(jī)打開(kāi)展開(kāi)
畢業(yè)論文 公平席位分配,摘要隨著經(jīng)濟(jì)社會(huì)的不斷發(fā)展,現(xiàn)在人們對(duì)于席位分配問(wèn)題的討論越來(lái)越多,并且席位分配問(wèn)題已經(jīng)被廣泛的應(yīng)用到其它領(lǐng)域,例如政治選舉、經(jīng)濟(jì)中資源的公平分配等。我們主要是對(duì)席位分配問(wèn)題的一些方法進(jìn)行研究,并做進(jìn)一步的探討。在第一章主要研究了q值法、d’hondt法、相對(duì)尾數(shù)法、最大概率法、0-1規(guī)劃法、最大熵法等方法。在文中的第...
內(nèi)容介紹
此文檔由會(huì)員 ljjwl8321 發(fā)布
摘要
隨著經(jīng)濟(jì)社會(huì)的不斷發(fā)展,現(xiàn)在人們對(duì)于席位分配問(wèn)題的討論越來(lái)越多,并且席位分配問(wèn)題已經(jīng)被廣泛的應(yīng)用到其它領(lǐng)域,例如政治選舉、經(jīng)濟(jì)中資源的公平分配等。我們主要是對(duì)席位分配問(wèn)題的一些方法進(jìn)行研究,并做進(jìn)一步的探討。在第一章主要研究了Q值法、D’Hondt法、相對(duì)尾數(shù)法、最大概率法、0-1規(guī)劃法、最大熵法等方法。在文中的第二章對(duì)最大概率法和相對(duì)尾數(shù)法之間的關(guān)系進(jìn)行了證明,得出當(dāng) 時(shí)(其中 表示第i個(gè)部門(mén)的人數(shù), 表示總的席位數(shù), 表示總?cè)藬?shù)) ( 是在最大概率法中用來(lái)作為判斷分配席位的標(biāo)準(zhǔn), = 是在相對(duì)尾數(shù)法中作為分配席位的標(biāo)準(zhǔn))這也是本文的主要成果。在文章的第三章還利用了最小二乘法建立了一個(gè)模型來(lái)比較各種方法計(jì)算出的結(jié)果的優(yōu)劣。
關(guān)鍵詞:最大概率 相對(duì)尾數(shù) 席位分配 檢驗(yàn)數(shù) 隨機(jī)變量
Abstract:
With economic society development,, people pay more attention to the problem of seats allocation , And it has been applied to other fields widely ,such as election , A just allocation of resources in economy .In this dissertation , we mainly make study on the several methods of seats allocation ,And to conduct further study .In chapter one, we have studied some methods of seats allocation ,such as the Q value ,The D ' Hondt Method , The Relatively Mantissa Method , The Maximum Probability Method , The 0—1 Programming Method and The Maximum Entropy Method. In this dissertation, we have got the further proof between The Maximum Probability Method and The Relatively Mantissa Method in the chapter two.
It is to say
If ( to stand for population number of I section, to stand for the number of seats, to stand for the population number.)
( come from The Maximum Probability Method for the criteria, = come from The Relatively Mantissa Method for the criteria)
And it was the main result of this dissertation. We would quote the least-squares method for comparing the data derived from calculation of several methods in chapter three.
Key words: The Maximum Probability The Relative Mantissa
Allocation seats check number stochastic variables
目 錄
摘要 VI
Abstract VI
引言 1
第1章 席位分配的幾種方法 2
1.1 Q值法 2
1.2 D’Hondt法 2
1.3 席位分配的最大概率法 2
1.4 席位分配的相對(duì)尾數(shù)法 4
1.5 席位分配的0-1規(guī)劃法 6
1.6 席位分配的最大熵法 7
1.6.1 熵的定義 8
1.6.2 最大熵法的介紹 8
第2章 最大概率法與相對(duì)尾數(shù)法的關(guān)系研究 12
2.1 知識(shí)的回顧 12
2.2 最大概率法與相對(duì)尾數(shù)法的相關(guān)性 12
第3章 對(duì)公平選舉方法的評(píng)定 15
3.1 研究方法—最小二乘法 15
3.2 建立模型并舉例分析 15
3.2.1 問(wèn)題的提出 15
3.2.2 建立模型并舉例 16
3.2.3 對(duì)美國(guó)和臺(tái)灣地區(qū)選舉運(yùn)用的方法進(jìn)行討論 18
研究意義 22
參 考 文 獻(xiàn) 23
附錄 24
Inter Programming 24
整數(shù)規(guī)劃 30
程序 34
隨著經(jīng)濟(jì)社會(huì)的不斷發(fā)展,現(xiàn)在人們對(duì)于席位分配問(wèn)題的討論越來(lái)越多,并且席位分配問(wèn)題已經(jīng)被廣泛的應(yīng)用到其它領(lǐng)域,例如政治選舉、經(jīng)濟(jì)中資源的公平分配等。我們主要是對(duì)席位分配問(wèn)題的一些方法進(jìn)行研究,并做進(jìn)一步的探討。在第一章主要研究了Q值法、D’Hondt法、相對(duì)尾數(shù)法、最大概率法、0-1規(guī)劃法、最大熵法等方法。在文中的第二章對(duì)最大概率法和相對(duì)尾數(shù)法之間的關(guān)系進(jìn)行了證明,得出當(dāng) 時(shí)(其中 表示第i個(gè)部門(mén)的人數(shù), 表示總的席位數(shù), 表示總?cè)藬?shù)) ( 是在最大概率法中用來(lái)作為判斷分配席位的標(biāo)準(zhǔn), = 是在相對(duì)尾數(shù)法中作為分配席位的標(biāo)準(zhǔn))這也是本文的主要成果。在文章的第三章還利用了最小二乘法建立了一個(gè)模型來(lái)比較各種方法計(jì)算出的結(jié)果的優(yōu)劣。
關(guān)鍵詞:最大概率 相對(duì)尾數(shù) 席位分配 檢驗(yàn)數(shù) 隨機(jī)變量
Abstract:
With economic society development,, people pay more attention to the problem of seats allocation , And it has been applied to other fields widely ,such as election , A just allocation of resources in economy .In this dissertation , we mainly make study on the several methods of seats allocation ,And to conduct further study .In chapter one, we have studied some methods of seats allocation ,such as the Q value ,The D ' Hondt Method , The Relatively Mantissa Method , The Maximum Probability Method , The 0—1 Programming Method and The Maximum Entropy Method. In this dissertation, we have got the further proof between The Maximum Probability Method and The Relatively Mantissa Method in the chapter two.
It is to say
If ( to stand for population number of I section, to stand for the number of seats, to stand for the population number.)
( come from The Maximum Probability Method for the criteria, = come from The Relatively Mantissa Method for the criteria)
And it was the main result of this dissertation. We would quote the least-squares method for comparing the data derived from calculation of several methods in chapter three.
Key words: The Maximum Probability The Relative Mantissa
Allocation seats check number stochastic variables
目 錄
摘要 VI
Abstract VI
引言 1
第1章 席位分配的幾種方法 2
1.1 Q值法 2
1.2 D’Hondt法 2
1.3 席位分配的最大概率法 2
1.4 席位分配的相對(duì)尾數(shù)法 4
1.5 席位分配的0-1規(guī)劃法 6
1.6 席位分配的最大熵法 7
1.6.1 熵的定義 8
1.6.2 最大熵法的介紹 8
第2章 最大概率法與相對(duì)尾數(shù)法的關(guān)系研究 12
2.1 知識(shí)的回顧 12
2.2 最大概率法與相對(duì)尾數(shù)法的相關(guān)性 12
第3章 對(duì)公平選舉方法的評(píng)定 15
3.1 研究方法—最小二乘法 15
3.2 建立模型并舉例分析 15
3.2.1 問(wèn)題的提出 15
3.2.2 建立模型并舉例 16
3.2.3 對(duì)美國(guó)和臺(tái)灣地區(qū)選舉運(yùn)用的方法進(jìn)行討論 18
研究意義 22
參 考 文 獻(xiàn) 23
附錄 24
Inter Programming 24
整數(shù)規(guī)劃 30
程序 34