半潛式深海平臺動力定位系統(tǒng)推力.docx
約86頁DOCX格式手機打開展開
半潛式深海平臺動力定位系統(tǒng)推力,摘要隨著工業(yè)的飛躍發(fā)展,人類對于能源的需求消耗越來越多,陸地和近海領域能源被開采殆盡,而深海領域蘊藏著豐富的資源,深海鉆井平臺在這種背景下應運而生。面對深海復雜的海況鉆井平臺要保持其定位精度以完成采油任務,傳統(tǒng)的錨泊技術已經無法滿足深海作業(yè)的定位要求,越來越多的海洋平臺采用動力定位系統(tǒng)。動力定位系統(tǒng)利用自身推進器產生的...
內容介紹
此文檔由會員 違規(guī)屏蔽12 發(fā)布
摘 要
隨著工業(yè)的飛躍發(fā)展,人類對于能源的需求消耗越來越多,陸地和近海領域能源被開采殆盡,而深海領域蘊藏著豐富的資源,深海鉆井平臺在這種背景下應運而生。面對深海復雜的海況鉆井平臺要保持其定位精度以完成采油任務,傳統(tǒng)的錨泊技術已經無法滿足深海作業(yè)的定位要求,越來越多的海洋平臺采用動力定位系統(tǒng)。
動力定位系統(tǒng)利用自身推進器產生的推力,有效產生力矩和反力矩以抗衡外界力和力矩以保持平臺定位。推力分配問題實質上是求解非線性方程組最優(yōu)解的問題,即在滿足一定的約束條件基礎上,在眾多組合中尋找每個推進器最適當?shù)耐屏Ψ岛头较?,使其達到推進系統(tǒng)能耗最優(yōu)和誤差最優(yōu)的目標。本文以半潛式深海平臺為研究對象,主要對推力分配策略進行研究和比較。
首先針對鉆井平臺具體對象,對外界風浪流載荷、平臺運動模型等進行分析。同時根據(jù)半潛式海洋平臺的動力定位系統(tǒng)的特殊性,闡述深海鉆井平臺推進器的選型、布置并分析其原因,并描述推進器與平臺之間的推力特性。
然后結合半潛式深海平臺推進器配置方案,重點分析在此配置方案下的推力分配策略。采用序列二次規(guī)劃法進行推力最優(yōu)分配,推力分配目標旨在最小化推力系統(tǒng)的能耗和推力誤差,同時考慮推進器的推力區(qū)域、推力極限等約束,并實現(xiàn)對推力區(qū)域的線性化處理,通過仿真結果指出序列二次規(guī)劃算法的不足,其對初值的依賴性強,結果不穩(wěn)定,易陷入局部最優(yōu)。
最后根據(jù)動力定位系統(tǒng)推力系統(tǒng)的基本要求,以及推力分配問題在近年來研究現(xiàn)狀,深入了解比較各種優(yōu)化算法的優(yōu)劣,在此基礎上提出基于量子粒子群算法的推力分配策略,并采用量子粒子群算法制定了詳盡的辦法解決推力分配問題。在相同的推力指令要求下,分別基于能耗最優(yōu)和誤差最優(yōu)兩種不同的海況要求,比較兩種算法的推力分配結果并分析。仿真結果表明量子粒子群算法具有更好的尋優(yōu)結果,但尋優(yōu)時間相對序列二次規(guī)劃法長,所以對于量子粒子群算法應用于工程應用還需要進一步改進。
關鍵詞 動力定位系統(tǒng);推力分配;序列二次規(guī)劃法;量子粒子群算法;
Abstract
With the development of industry in the world, more and more resources are required and consumed. As a result, resources on land and the sea close to the shore will be mined out in the near future. There are extraordinary abundant resources in the deep sea, so deepwater drilling platform arises at the historic moment. How to operate the drilling platform in the complex deepwater surroundings to fulfill drilling cannot afford to ignore. Traditional way to anchor the platforms cannot meet the orientation require in the deepwater surroundings. More and more drilling rigs have adopted dynamic positioning system (DPS).
Compared to the traditional way to anchor the platforms, DPS totally depends on its own thrust system to generate force and moment to orient the drilling rig. Thrust allocation is defined to search the best thrust of every propeller in order to meet the objective, such as minimize the energy and thrust error, by using the platform’s own propellers. Also the thrust must satisfy some restriction.
Firstly according to the particularity of the dynamic positioning system, the selection and arrangement of the propellers on the drilling rig is expatiated and the reason is explained as well. What’s more, the thrust characteristics of the propeller are depicted. Integrating the semi-submersible offshore platform’s thruster configuration scheme of this topic, the thrust allocation problem in this case is focused on the analysis. Semi-submersible drilling rigs in this thesis possess eight azimuth propellers. The objective of thrust allocation is to minimize the energy consumption of thrust system and the thrust error, considering the restriction such as the limit of the propellers and singularity and so on. This thesis adopted SQP (Sequence quadratic programming) to solve the optimal solution of thrust allocation at first. The shortcomings using SQP methods are illustrated, for example, it strongly depends on the initial value and is easy to fall into the local optimum. Then by means of analyzing the essential request and the development of the thrust allocation, and in-depth understanding on the various kinds of optimization algorithms, based on which, this thesis put forward a new method using QPSO (Quantum particle swarm optimization) method to solve the thrust allocation. Then QPSO combined with disjunctive programming techniques are used to present a more elaborate solution to optimal thrust allocation problems. The simulation results showed that the method using QPSO possess good effect to search for the optimal result for the thrust allocation at last.
Keywords: Dynamic position system; thrust allocation; Sequence quadratic programming; Quantum particle swarm optimization.
目錄
摘 要 I
Abstract III
第1章 緒論 1
1.1 課題研究背景及意義 1
1.2 半潛式平臺及其動力定位系統(tǒng) 2
1.3 國內外推力分配算法研究現(xiàn)狀 5
1.4 量子粒子群算法的發(fā)展及其優(yōu)點 6
1.5 本論文主要研究內容 7
第2章 半潛式平臺動力定位系統(tǒng)數(shù)學建模 10
2.1 半潛式深海平臺主要參數(shù) 10
2.2 環(huán)境載荷模型 11
2.2.1 風載荷 11
2.2.2 流載荷 13
2.2.3 波浪二階力 14
2.3 半潛式鉆井平臺的數(shù)學模型 14
2.3.1 平臺運動模型 14
2.3.2 平臺控制模型 15
2.3.3 Matlab模型仿真 17
2.4 本章小結 19
第3章 半潛式鉆井平..
隨著工業(yè)的飛躍發(fā)展,人類對于能源的需求消耗越來越多,陸地和近海領域能源被開采殆盡,而深海領域蘊藏著豐富的資源,深海鉆井平臺在這種背景下應運而生。面對深海復雜的海況鉆井平臺要保持其定位精度以完成采油任務,傳統(tǒng)的錨泊技術已經無法滿足深海作業(yè)的定位要求,越來越多的海洋平臺采用動力定位系統(tǒng)。
動力定位系統(tǒng)利用自身推進器產生的推力,有效產生力矩和反力矩以抗衡外界力和力矩以保持平臺定位。推力分配問題實質上是求解非線性方程組最優(yōu)解的問題,即在滿足一定的約束條件基礎上,在眾多組合中尋找每個推進器最適當?shù)耐屏Ψ岛头较?,使其達到推進系統(tǒng)能耗最優(yōu)和誤差最優(yōu)的目標。本文以半潛式深海平臺為研究對象,主要對推力分配策略進行研究和比較。
首先針對鉆井平臺具體對象,對外界風浪流載荷、平臺運動模型等進行分析。同時根據(jù)半潛式海洋平臺的動力定位系統(tǒng)的特殊性,闡述深海鉆井平臺推進器的選型、布置并分析其原因,并描述推進器與平臺之間的推力特性。
然后結合半潛式深海平臺推進器配置方案,重點分析在此配置方案下的推力分配策略。采用序列二次規(guī)劃法進行推力最優(yōu)分配,推力分配目標旨在最小化推力系統(tǒng)的能耗和推力誤差,同時考慮推進器的推力區(qū)域、推力極限等約束,并實現(xiàn)對推力區(qū)域的線性化處理,通過仿真結果指出序列二次規(guī)劃算法的不足,其對初值的依賴性強,結果不穩(wěn)定,易陷入局部最優(yōu)。
最后根據(jù)動力定位系統(tǒng)推力系統(tǒng)的基本要求,以及推力分配問題在近年來研究現(xiàn)狀,深入了解比較各種優(yōu)化算法的優(yōu)劣,在此基礎上提出基于量子粒子群算法的推力分配策略,并采用量子粒子群算法制定了詳盡的辦法解決推力分配問題。在相同的推力指令要求下,分別基于能耗最優(yōu)和誤差最優(yōu)兩種不同的海況要求,比較兩種算法的推力分配結果并分析。仿真結果表明量子粒子群算法具有更好的尋優(yōu)結果,但尋優(yōu)時間相對序列二次規(guī)劃法長,所以對于量子粒子群算法應用于工程應用還需要進一步改進。
關鍵詞 動力定位系統(tǒng);推力分配;序列二次規(guī)劃法;量子粒子群算法;
Abstract
With the development of industry in the world, more and more resources are required and consumed. As a result, resources on land and the sea close to the shore will be mined out in the near future. There are extraordinary abundant resources in the deep sea, so deepwater drilling platform arises at the historic moment. How to operate the drilling platform in the complex deepwater surroundings to fulfill drilling cannot afford to ignore. Traditional way to anchor the platforms cannot meet the orientation require in the deepwater surroundings. More and more drilling rigs have adopted dynamic positioning system (DPS).
Compared to the traditional way to anchor the platforms, DPS totally depends on its own thrust system to generate force and moment to orient the drilling rig. Thrust allocation is defined to search the best thrust of every propeller in order to meet the objective, such as minimize the energy and thrust error, by using the platform’s own propellers. Also the thrust must satisfy some restriction.
Firstly according to the particularity of the dynamic positioning system, the selection and arrangement of the propellers on the drilling rig is expatiated and the reason is explained as well. What’s more, the thrust characteristics of the propeller are depicted. Integrating the semi-submersible offshore platform’s thruster configuration scheme of this topic, the thrust allocation problem in this case is focused on the analysis. Semi-submersible drilling rigs in this thesis possess eight azimuth propellers. The objective of thrust allocation is to minimize the energy consumption of thrust system and the thrust error, considering the restriction such as the limit of the propellers and singularity and so on. This thesis adopted SQP (Sequence quadratic programming) to solve the optimal solution of thrust allocation at first. The shortcomings using SQP methods are illustrated, for example, it strongly depends on the initial value and is easy to fall into the local optimum. Then by means of analyzing the essential request and the development of the thrust allocation, and in-depth understanding on the various kinds of optimization algorithms, based on which, this thesis put forward a new method using QPSO (Quantum particle swarm optimization) method to solve the thrust allocation. Then QPSO combined with disjunctive programming techniques are used to present a more elaborate solution to optimal thrust allocation problems. The simulation results showed that the method using QPSO possess good effect to search for the optimal result for the thrust allocation at last.
Keywords: Dynamic position system; thrust allocation; Sequence quadratic programming; Quantum particle swarm optimization.
目錄
摘 要 I
Abstract III
第1章 緒論 1
1.1 課題研究背景及意義 1
1.2 半潛式平臺及其動力定位系統(tǒng) 2
1.3 國內外推力分配算法研究現(xiàn)狀 5
1.4 量子粒子群算法的發(fā)展及其優(yōu)點 6
1.5 本論文主要研究內容 7
第2章 半潛式平臺動力定位系統(tǒng)數(shù)學建模 10
2.1 半潛式深海平臺主要參數(shù) 10
2.2 環(huán)境載荷模型 11
2.2.1 風載荷 11
2.2.2 流載荷 13
2.2.3 波浪二階力 14
2.3 半潛式鉆井平臺的數(shù)學模型 14
2.3.1 平臺運動模型 14
2.3.2 平臺控制模型 15
2.3.3 Matlab模型仿真 17
2.4 本章小結 19
第3章 半潛式鉆井平..