數(shù)據(jù)挖掘-----外文翻譯.doc
約13頁DOC格式手機打開展開
數(shù)據(jù)挖掘-----外文翻譯,abstractthe modern technologies of computers, networks, and sensors have made data collection and organization an almost effortless task. however, the captured ...
內(nèi)容介紹
此文檔由會員 wanli1988go 發(fā)布
ABSTRACT
The modern technologies of computers, networks, and sensors have made data collection and organization an almost effortless task. However, the captured data needs to be converted into information and knowledge from recorded data to become useful. Data mining is the entire process of applying computer-based methodology, including new techniques for knowledge discovery, from data.
Keywords
Data mining
1.1 INTRODUCTION
Modern science and engineering are based on using first-principle models to describe physical, biological, and social systems. Such an approach starts with a basic scientific model, such as Newton's laws of motion or Maxwell's equations in electromagnetism, and then builds upon them various applications in mechanical engineering or electrical engineering. In this approach, experimental data are used to verify the underlying first-principle models and to estimate some of the parameters that are difficult or sometimes impossible to measure directly. However, in many domains the underlying first principles are unknown, or the systems under study are too complex to be mathematically formalized. With the growing use of computers,
摘要:現(xiàn)代化的計算機技術(shù)、網(wǎng)絡(luò)技術(shù)和傳感器技術(shù)使數(shù)據(jù)的搜集和組織成為一項毫不費力的任務(wù)。但是,所獲得的數(shù)據(jù)需要從已記錄的數(shù)據(jù)轉(zhuǎn)換成有用的信息和知識。數(shù)據(jù)挖掘就是應(yīng)用基于計算機的方法論的整個過程,包括新的知識發(fā)現(xiàn)技術(shù)。
關(guān)鍵詞:數(shù)據(jù)挖掘
1.1概述
現(xiàn)代科學和工程建立在用“首要原則模型”來描述物理、生物和社會系統(tǒng)的基礎(chǔ)上。這種方法從基礎(chǔ)的科學模型入手,如牛頓運動定律或麥克斯韋的電磁公式,然后基于模型來建立機械工程或電子工程方面的各種應(yīng)用。在這種方法中,用實驗數(shù)據(jù)來驗證基本的“首要原則模型”,以及對一些難以直接測量或者根本不可能直接測量的參數(shù)進行評估。但是在許多領(lǐng)域,基本的“首要原則模型”往往是未知的,或者研究的系統(tǒng)太復雜而難以進行數(shù)學定型,隨著計算機的廣泛應(yīng)用,像這樣的復雜系統(tǒng)生成了大量的數(shù)據(jù)。在沒有“首要原則模型”時候,可以利用這些易得的可用數(shù)據(jù),通過對系統(tǒng)變量之間可以利用的關(guān)系(即未知的輸入輸出相關(guān)性)進行評估來導出模型。這樣,傳統(tǒng)的建模及基于“首要原則模型”進行分析的方法與開發(fā)模型及直接對數(shù)據(jù)進行相應(yīng)分析的方法之間普遍存在著范型變換。
對大型的、復雜的、信息豐富的數(shù)據(jù)集的理解實際上是所有的商業(yè)、科學、工程領(lǐng)域的共同需要,在商務(wù)領(lǐng)域,公司和顧客的數(shù)據(jù)逐漸被認為是一種戰(zhàn)略資產(chǎn)。在當今的競爭世界中,吸取隱藏在這些數(shù)據(jù)后面的有用知識并利用這些知識
The modern technologies of computers, networks, and sensors have made data collection and organization an almost effortless task. However, the captured data needs to be converted into information and knowledge from recorded data to become useful. Data mining is the entire process of applying computer-based methodology, including new techniques for knowledge discovery, from data.
Keywords
Data mining
1.1 INTRODUCTION
Modern science and engineering are based on using first-principle models to describe physical, biological, and social systems. Such an approach starts with a basic scientific model, such as Newton's laws of motion or Maxwell's equations in electromagnetism, and then builds upon them various applications in mechanical engineering or electrical engineering. In this approach, experimental data are used to verify the underlying first-principle models and to estimate some of the parameters that are difficult or sometimes impossible to measure directly. However, in many domains the underlying first principles are unknown, or the systems under study are too complex to be mathematically formalized. With the growing use of computers,
摘要:現(xiàn)代化的計算機技術(shù)、網(wǎng)絡(luò)技術(shù)和傳感器技術(shù)使數(shù)據(jù)的搜集和組織成為一項毫不費力的任務(wù)。但是,所獲得的數(shù)據(jù)需要從已記錄的數(shù)據(jù)轉(zhuǎn)換成有用的信息和知識。數(shù)據(jù)挖掘就是應(yīng)用基于計算機的方法論的整個過程,包括新的知識發(fā)現(xiàn)技術(shù)。
關(guān)鍵詞:數(shù)據(jù)挖掘
1.1概述
現(xiàn)代科學和工程建立在用“首要原則模型”來描述物理、生物和社會系統(tǒng)的基礎(chǔ)上。這種方法從基礎(chǔ)的科學模型入手,如牛頓運動定律或麥克斯韋的電磁公式,然后基于模型來建立機械工程或電子工程方面的各種應(yīng)用。在這種方法中,用實驗數(shù)據(jù)來驗證基本的“首要原則模型”,以及對一些難以直接測量或者根本不可能直接測量的參數(shù)進行評估。但是在許多領(lǐng)域,基本的“首要原則模型”往往是未知的,或者研究的系統(tǒng)太復雜而難以進行數(shù)學定型,隨著計算機的廣泛應(yīng)用,像這樣的復雜系統(tǒng)生成了大量的數(shù)據(jù)。在沒有“首要原則模型”時候,可以利用這些易得的可用數(shù)據(jù),通過對系統(tǒng)變量之間可以利用的關(guān)系(即未知的輸入輸出相關(guān)性)進行評估來導出模型。這樣,傳統(tǒng)的建模及基于“首要原則模型”進行分析的方法與開發(fā)模型及直接對數(shù)據(jù)進行相應(yīng)分析的方法之間普遍存在著范型變換。
對大型的、復雜的、信息豐富的數(shù)據(jù)集的理解實際上是所有的商業(yè)、科學、工程領(lǐng)域的共同需要,在商務(wù)領(lǐng)域,公司和顧客的數(shù)據(jù)逐漸被認為是一種戰(zhàn)略資產(chǎn)。在當今的競爭世界中,吸取隱藏在這些數(shù)據(jù)后面的有用知識并利用這些知識