挖掘機(jī)臂液壓系統(tǒng)的模型化參量估計(jì)-------外文翻譯.doc
約18頁(yè)DOC格式手機(jī)打開(kāi)展開(kāi)
挖掘機(jī)臂液壓系統(tǒng)的模型化參量估計(jì)-------外文翻譯,摘 要首先介紹了液壓挖掘機(jī)的一個(gè)改裝的電動(dòng)液壓的比例系統(tǒng)。根據(jù)負(fù)載獨(dú)立流量分配( ludv )系統(tǒng)的原則和特點(diǎn),以動(dòng)臂液壓系統(tǒng)為例并忽略液壓缸中的油大量泄漏,建立一個(gè)力平衡方程和一個(gè)液壓缸的連續(xù)性方程?;陔妱?dòng)液壓的比例閥門的流體運(yùn)動(dòng)方程,測(cè)試的分析穿過(guò)閥門的壓力的不同。結(jié)果顯示壓力的差異并不會(huì)改變負(fù)載,此時(shí)負(fù)載接近2...
內(nèi)容介紹
此文檔由會(huì)員 wanli1988go 發(fā)布
摘 要
首先介紹了液壓挖掘機(jī)的一個(gè)改裝的電動(dòng)液壓的比例系統(tǒng)。根據(jù)負(fù)載獨(dú)立流量分配( LUDV )系統(tǒng)的原則和特點(diǎn),以動(dòng)臂液壓系統(tǒng)為例并忽略液壓缸中的油大量泄漏,建立一個(gè)力平衡方程和一個(gè)液壓缸的連續(xù)性方程?;陔妱?dòng)液壓的比例閥門的流體運(yùn)動(dòng)方程,測(cè)試的分析穿過(guò)閥門的壓力的不同。結(jié)果顯示壓力的差異并不會(huì)改變負(fù)載,此時(shí)負(fù)載接近2.0MPa。然后假設(shè)穿過(guò)閥門的液壓油與閥芯的位移成正比并且不受負(fù)載影響,提出了一個(gè)電液控制系統(tǒng)的簡(jiǎn)化模型。同時(shí)通過(guò)分析結(jié)構(gòu)和承重的動(dòng)臂裝置,并將機(jī)械臂的力矩等效方程與旋轉(zhuǎn)法、參數(shù)估計(jì)估計(jì)法結(jié)合起來(lái)建立了液壓缸以等質(zhì)量等為參數(shù)的受力平衡參數(shù)方程。最后用階躍電流控制電液比例閥來(lái)測(cè)試動(dòng)臂液壓缸中液壓油的階躍響應(yīng)。根據(jù)實(shí)驗(yàn)曲線,閥門的流量增益系數(shù)被確定為2.825×10-4m3/(s•A),并驗(yàn)證了該模型。
關(guān)鍵詞:挖掘機(jī),電液比例系統(tǒng),負(fù)載獨(dú)立流量分配( LUDV )系統(tǒng),建模,參
Abstract
A retrofitted electro-hydraulic proportional system for hydraulic excavator was introduced firstly. According to the principle and characteristic of load independent flow distribution (LUDV) system, taking boom hydraulic system as an example and ignoring the leakage of hydraulic cylinder and the mass of oil in it ,a force equilibrium equation and a continuous equation of hydraulic cylinder were set up. Based on the flow equation of electro-hydraulic proportional valve, the pressure passing through the valve and the difference pressure were tested and analyzed. The results show that the difference of pressure does not change with load and it approximates to 2.0MPa. And then, assume the flow across the valve id directly proportional to spool displacement and is not influenced by load, a simplified model of electro-hydraulic system was put forward. At the same time, by analyzing the structure and load-bearing of boom instrument, and combining moment equivalent equation of manipulator with rotating law, the estimation methods and equations for such parameters as equivalent mass and bearing force of hydraulic- cylinder were set up. Finally, the step response of flow of boom cylinder was tested when the electro-hydraulic proportional valve was controlled by the step current. Based on the experiment curve, the flow gain coefficient of valve unidentified as 2.825×10-4m3/(s•A) and the mode is verified.
首先介紹了液壓挖掘機(jī)的一個(gè)改裝的電動(dòng)液壓的比例系統(tǒng)。根據(jù)負(fù)載獨(dú)立流量分配( LUDV )系統(tǒng)的原則和特點(diǎn),以動(dòng)臂液壓系統(tǒng)為例并忽略液壓缸中的油大量泄漏,建立一個(gè)力平衡方程和一個(gè)液壓缸的連續(xù)性方程?;陔妱?dòng)液壓的比例閥門的流體運(yùn)動(dòng)方程,測(cè)試的分析穿過(guò)閥門的壓力的不同。結(jié)果顯示壓力的差異并不會(huì)改變負(fù)載,此時(shí)負(fù)載接近2.0MPa。然后假設(shè)穿過(guò)閥門的液壓油與閥芯的位移成正比并且不受負(fù)載影響,提出了一個(gè)電液控制系統(tǒng)的簡(jiǎn)化模型。同時(shí)通過(guò)分析結(jié)構(gòu)和承重的動(dòng)臂裝置,并將機(jī)械臂的力矩等效方程與旋轉(zhuǎn)法、參數(shù)估計(jì)估計(jì)法結(jié)合起來(lái)建立了液壓缸以等質(zhì)量等為參數(shù)的受力平衡參數(shù)方程。最后用階躍電流控制電液比例閥來(lái)測(cè)試動(dòng)臂液壓缸中液壓油的階躍響應(yīng)。根據(jù)實(shí)驗(yàn)曲線,閥門的流量增益系數(shù)被確定為2.825×10-4m3/(s•A),并驗(yàn)證了該模型。
關(guān)鍵詞:挖掘機(jī),電液比例系統(tǒng),負(fù)載獨(dú)立流量分配( LUDV )系統(tǒng),建模,參
Abstract
A retrofitted electro-hydraulic proportional system for hydraulic excavator was introduced firstly. According to the principle and characteristic of load independent flow distribution (LUDV) system, taking boom hydraulic system as an example and ignoring the leakage of hydraulic cylinder and the mass of oil in it ,a force equilibrium equation and a continuous equation of hydraulic cylinder were set up. Based on the flow equation of electro-hydraulic proportional valve, the pressure passing through the valve and the difference pressure were tested and analyzed. The results show that the difference of pressure does not change with load and it approximates to 2.0MPa. And then, assume the flow across the valve id directly proportional to spool displacement and is not influenced by load, a simplified model of electro-hydraulic system was put forward. At the same time, by analyzing the structure and load-bearing of boom instrument, and combining moment equivalent equation of manipulator with rotating law, the estimation methods and equations for such parameters as equivalent mass and bearing force of hydraulic- cylinder were set up. Finally, the step response of flow of boom cylinder was tested when the electro-hydraulic proportional valve was controlled by the step current. Based on the experiment curve, the flow gain coefficient of valve unidentified as 2.825×10-4m3/(s•A) and the mode is verified.