復(fù)雜光學(xué)曲面慢刀伺服超精密車削技術(shù)研究.doc
約8頁(yè)DOC格式手機(jī)打開展開
復(fù)雜光學(xué)曲面慢刀伺服超精密車削技術(shù)研究,自由曲面光學(xué)元件具有許多優(yōu)異的光學(xué)性能,越來(lái)越多地應(yīng)用到現(xiàn)代光學(xué)系統(tǒng)設(shè)計(jì)中。而自由曲面光學(xué)元件制造的復(fù)雜性和不確定性是制約其應(yīng)用的瓶頸之一。慢刀伺服單點(diǎn)金剛石車削是一種可以加工很高精度自由曲面光學(xué)表面或非回轉(zhuǎn)對(duì)稱光學(xué)曲面的新技術(shù)。機(jī)床伺服執(zhí)行能力是自由曲面能否加工的基本條件。金剛石刀具幾何參數(shù)的選擇、刀具路徑規(guī)劃及刀具...
內(nèi)容介紹
此文檔由會(huì)員 wanli1988go 發(fā)布
自由曲面光學(xué)元件具有許多優(yōu)異的光學(xué)性能,越來(lái)越多地應(yīng)用到現(xiàn)代光學(xué)系統(tǒng)設(shè)計(jì)中。而自由曲面光學(xué)元件制造的復(fù)雜性和不確定性是制約其應(yīng)用的瓶頸之一。慢刀伺服單點(diǎn)金剛石車削是一種可以加工很高精度自由曲面光學(xué)表面或非回轉(zhuǎn)對(duì)稱光學(xué)曲面的新技術(shù)。機(jī)床伺服執(zhí)行能力是自由曲面能否加工的基本條件。金剛石刀具幾何參數(shù)的選擇、刀具路徑規(guī)劃及刀具半徑補(bǔ)償是確保加工精度的關(guān)鍵。在理論上,對(duì)伺服執(zhí)行能力進(jìn)行了分析;發(fā)展了基于曲面特性分析的刀具參數(shù)確定方法;研究了穩(wěn)定 X 軸的刀具圓弧半徑補(bǔ)償及刀具路徑生成技術(shù)。使用慢刀伺服技術(shù)加工了多種典型的自由曲面光學(xué)元件,取得了較好的結(jié)果。
慢刀伺服和快刀伺服車削是2種近年發(fā)展比較快的超精密加工技術(shù),這2種技術(shù)均能顯著提高微結(jié)構(gòu)陣列和自由曲面光學(xué)器件的加工效率。
慢刀伺服車削是對(duì)車床主軸與Z軸均進(jìn)行控制,使機(jī)床主軸變成位置可控的C軸,機(jī)床的X、Z、C三軸在空間構(gòu)成了柱坐標(biāo)系,同時(shí),高性能和高編程分辨率的數(shù)控系統(tǒng)將復(fù)雜面形零件的三維笛卡爾坐標(biāo)轉(zhuǎn)化為極坐標(biāo),并對(duì)所有運(yùn)動(dòng)軸發(fā)送插補(bǔ)進(jìn)給指令,精確協(xié)調(diào)主軸和刀具的相對(duì)運(yùn)動(dòng),實(shí)現(xiàn)對(duì)復(fù)雜面形零件的車削加工。慢刀伺服車削Z軸和X軸往往同時(shí)作正弦往復(fù)運(yùn)動(dòng),需要多軸插補(bǔ)聯(lián)動(dòng)。
The inclusion of freeform elements in an optical system provides opportunities for numerous improvements in performance. However, designers are reluctant to utilize freeform surfaces due to the complexity and uncertainty of their fabrication. Single diamond turning is a novel machining process capable of generating freeform optical surfaces or rotational non-symmetric surfaces at high levels of accuracy. In order to achieve good results with this technology some key parameters need to be satisfied. These parameters include tool geometry, tool path generation, tool radius correction,and servo system performance. The servo capacity of slow-tool-servo machine is analysed, and a method to
慢刀伺服和快刀伺服車削是2種近年發(fā)展比較快的超精密加工技術(shù),這2種技術(shù)均能顯著提高微結(jié)構(gòu)陣列和自由曲面光學(xué)器件的加工效率。
慢刀伺服車削是對(duì)車床主軸與Z軸均進(jìn)行控制,使機(jī)床主軸變成位置可控的C軸,機(jī)床的X、Z、C三軸在空間構(gòu)成了柱坐標(biāo)系,同時(shí),高性能和高編程分辨率的數(shù)控系統(tǒng)將復(fù)雜面形零件的三維笛卡爾坐標(biāo)轉(zhuǎn)化為極坐標(biāo),并對(duì)所有運(yùn)動(dòng)軸發(fā)送插補(bǔ)進(jìn)給指令,精確協(xié)調(diào)主軸和刀具的相對(duì)運(yùn)動(dòng),實(shí)現(xiàn)對(duì)復(fù)雜面形零件的車削加工。慢刀伺服車削Z軸和X軸往往同時(shí)作正弦往復(fù)運(yùn)動(dòng),需要多軸插補(bǔ)聯(lián)動(dòng)。
The inclusion of freeform elements in an optical system provides opportunities for numerous improvements in performance. However, designers are reluctant to utilize freeform surfaces due to the complexity and uncertainty of their fabrication. Single diamond turning is a novel machining process capable of generating freeform optical surfaces or rotational non-symmetric surfaces at high levels of accuracy. In order to achieve good results with this technology some key parameters need to be satisfied. These parameters include tool geometry, tool path generation, tool radius correction,and servo system performance. The servo capacity of slow-tool-servo machine is analysed, and a method to