若當(dāng)標(biāo)準(zhǔn)形理論在矩陣特征值問題上的應(yīng)用.doc
約30頁DOC格式手機打開展開
若當(dāng)標(biāo)準(zhǔn)形理論在矩陣特征值問題上的應(yīng)用,the application of jordan standard form theory in the issue of matrix eigenvalue 目錄摘 要iabstracti引 言1第一章 矩陣的基本知識21.1矩陣等價和矩陣的秩21.2矩陣的特征值及特征向量和矩...
內(nèi)容介紹
此文檔由會員 旅順人5 發(fā)布
若當(dāng)標(biāo)準(zhǔn)形理論在矩陣特征值問題上的應(yīng)用
The application of Jordan Standard Form theory in the issue of matrix eigenvalue
目 錄
摘 要 I
Abstract I
引 言 1
第一章 矩陣的基本知識 2
1.1 矩陣等價和矩陣的秩 2
1.2 矩陣的特征值及特征向量和矩陣的相似 3
1.3 矩陣及矩陣的若當(dāng)標(biāo)準(zhǔn)型 3
第二章 矩陣的若當(dāng)標(biāo)準(zhǔn)型的常見應(yīng)用 8
2.1 矩陣的若當(dāng)標(biāo)準(zhǔn)型在矩陣分解上的應(yīng)用 8
2.2 矩陣的若當(dāng)標(biāo)準(zhǔn)型在矩陣秩的問題上的應(yīng)用 11
第三章 矩陣的若當(dāng)標(biāo)準(zhǔn)型在有關(guān)矩陣特征值問題上的應(yīng)用 16
結(jié)論 26
致謝 27
參考文獻 28
摘要 在高等代數(shù)中,比如線性方程問題,二次型問題以及線性空間的問題都運用到了矩陣的理論。本文主要簡單介紹了矩陣的若當(dāng)標(biāo)準(zhǔn)型理論在矩陣的分解以及矩陣秩的有關(guān)問題上的應(yīng)用。著重探究了若當(dāng)標(biāo)準(zhǔn)型理論在有關(guān)矩陣特征值方面的應(yīng)用。通過幾個典型的例子以及考研經(jīng)常出現(xiàn)的題目進行講解來對矩陣若當(dāng)標(biāo)準(zhǔn)性能理論進行深一步地理解。
關(guān)鍵詞:高等代數(shù);若當(dāng)標(biāo)準(zhǔn)形;矩陣; 等價;相似;特征值
The application of Jordan Standard Form theory in the issue of matrix eigenvalue
Abstract In advanced algebra , matrix theory and methods throughout the various aspects determinant of linear equations, many questions linear space, linear transformations , quadratic . There are of advanced algebra can be converted into the corresponding matrix problem to deal with . The theory of matrix is also in an important tool for research questions
of mathematics and science branch .
The theory of Jordan standard in matrix is an very important theory in advanced algebra. I discuss the theory in the aspect of rank matrix and the decomposition of matrix ,especially the applications in eigenvalues of the matrix .We want through a few typical examples and some questions which appeal in pubmed to understand the matrix theory deeply .
Keywords:advanced algebra; Jordan standard form; matrix; similar; equivalence; eigenvalues
The application of Jordan Standard Form theory in the issue of matrix eigenvalue
目 錄
摘 要 I
Abstract I
引 言 1
第一章 矩陣的基本知識 2
1.1 矩陣等價和矩陣的秩 2
1.2 矩陣的特征值及特征向量和矩陣的相似 3
1.3 矩陣及矩陣的若當(dāng)標(biāo)準(zhǔn)型 3
第二章 矩陣的若當(dāng)標(biāo)準(zhǔn)型的常見應(yīng)用 8
2.1 矩陣的若當(dāng)標(biāo)準(zhǔn)型在矩陣分解上的應(yīng)用 8
2.2 矩陣的若當(dāng)標(biāo)準(zhǔn)型在矩陣秩的問題上的應(yīng)用 11
第三章 矩陣的若當(dāng)標(biāo)準(zhǔn)型在有關(guān)矩陣特征值問題上的應(yīng)用 16
結(jié)論 26
致謝 27
參考文獻 28
摘要 在高等代數(shù)中,比如線性方程問題,二次型問題以及線性空間的問題都運用到了矩陣的理論。本文主要簡單介紹了矩陣的若當(dāng)標(biāo)準(zhǔn)型理論在矩陣的分解以及矩陣秩的有關(guān)問題上的應(yīng)用。著重探究了若當(dāng)標(biāo)準(zhǔn)型理論在有關(guān)矩陣特征值方面的應(yīng)用。通過幾個典型的例子以及考研經(jīng)常出現(xiàn)的題目進行講解來對矩陣若當(dāng)標(biāo)準(zhǔn)性能理論進行深一步地理解。
關(guān)鍵詞:高等代數(shù);若當(dāng)標(biāo)準(zhǔn)形;矩陣; 等價;相似;特征值
The application of Jordan Standard Form theory in the issue of matrix eigenvalue
Abstract In advanced algebra , matrix theory and methods throughout the various aspects determinant of linear equations, many questions linear space, linear transformations , quadratic . There are of advanced algebra can be converted into the corresponding matrix problem to deal with . The theory of matrix is also in an important tool for research questions
of mathematics and science branch .
The theory of Jordan standard in matrix is an very important theory in advanced algebra. I discuss the theory in the aspect of rank matrix and the decomposition of matrix ,especially the applications in eigenvalues of the matrix .We want through a few typical examples and some questions which appeal in pubmed to understand the matrix theory deeply .
Keywords:advanced algebra; Jordan standard form; matrix; similar; equivalence; eigenvalues