通過一只多指機械手來觀測對象效能的方法(外文翻譯).rar
通過一只多指機械手來觀測對象效能的方法(外文翻譯),包含中文翻譯和英文原文,內(nèi)容詳細完整,建議下載參考!中文: 4780 字英文: 17440 字符本文提出了一種通過多指靈活機械手來觀測對象效能的方法。目前的任務(wù)目標是如何從一個瓶子上一只瓶蓋。假設(shè)是通過其他方法比如說觀察示范操作來初步制定計劃,該系統(tǒng)適用于比較簡單的抓取...
該文檔為壓縮文件,包含的文件列表如下:
![](http://img.queshao.com/images/pcgzh.gif)
![](http://preview.queshao.com/tobuy/74198.gif)
內(nèi)容介紹
原文檔由會員 xiaowei 發(fā)布
通過一只多指機械手來觀測對象效能的方法(外文翻譯)
包含中文翻譯和英文原文,內(nèi)容詳細完整,建議下載參考!
中文: 4780 字
英文: 17440 字符
本文提出了一種通過多指靈活機械手來觀測對象效能的方法。目前的任務(wù)目標是如何從一個瓶子上一只瓶蓋。假設(shè)是通過其他方法比如說觀察示范操作來初步制定計劃,該系統(tǒng)適用于比較簡單的抓取行動。為響應(yīng)這種探索行動,對象沿物理約束(螺釘)移動(旋轉(zhuǎn))。機器人通過手指來檢測由此產(chǎn)生的結(jié)果。并且應(yīng)用一種非監(jiān)督型的統(tǒng)計學方法將結(jié)果分類,這種方法結(jié)合了高要求自相關(guān),主部件分析,均值漂移聚類三種方法,因為試驗了真實的機械手和不同直徑的瓶蓋所以該方法能夠檢測和分類不同的旋轉(zhuǎn)類型。
關(guān)鍵詞:模擬,功效,操縱,運動約束,兼容手指。
This paper proposes a learning method for detecting object affordances through haptic exploration by a multi-fingered robot hand. Learning how to remove a screw cap from a bottle is the present target task. Assuming that coarse manipulation strategy is given by other methods, such as visual observation of a model task, the system applies coarse grabbing actions to the target object. In response to the exploratory actions, the object
moves (rotates, in this case) along the physical constraint (screw). The robot detects the resulting motion through proprioception of the compliant fingers. A non-supervised statistical learning method is applied to categorize the resulting motion. The method is a combination of high-order local autocorrelation (HLAC), principal components analysis (PCA), and mean-shift clustering. Experiments with a real multi-fingered robot hand
and bottle caps of different diameters confirm that the proposed method can detect and categorize rotational constraints.
Keywords: Imitation; affordances; manipulation; motion constraint; compliant fingers;
statistical learning.
包含中文翻譯和英文原文,內(nèi)容詳細完整,建議下載參考!
中文: 4780 字
英文: 17440 字符
本文提出了一種通過多指靈活機械手來觀測對象效能的方法。目前的任務(wù)目標是如何從一個瓶子上一只瓶蓋。假設(shè)是通過其他方法比如說觀察示范操作來初步制定計劃,該系統(tǒng)適用于比較簡單的抓取行動。為響應(yīng)這種探索行動,對象沿物理約束(螺釘)移動(旋轉(zhuǎn))。機器人通過手指來檢測由此產(chǎn)生的結(jié)果。并且應(yīng)用一種非監(jiān)督型的統(tǒng)計學方法將結(jié)果分類,這種方法結(jié)合了高要求自相關(guān),主部件分析,均值漂移聚類三種方法,因為試驗了真實的機械手和不同直徑的瓶蓋所以該方法能夠檢測和分類不同的旋轉(zhuǎn)類型。
關(guān)鍵詞:模擬,功效,操縱,運動約束,兼容手指。
This paper proposes a learning method for detecting object affordances through haptic exploration by a multi-fingered robot hand. Learning how to remove a screw cap from a bottle is the present target task. Assuming that coarse manipulation strategy is given by other methods, such as visual observation of a model task, the system applies coarse grabbing actions to the target object. In response to the exploratory actions, the object
moves (rotates, in this case) along the physical constraint (screw). The robot detects the resulting motion through proprioception of the compliant fingers. A non-supervised statistical learning method is applied to categorize the resulting motion. The method is a combination of high-order local autocorrelation (HLAC), principal components analysis (PCA), and mean-shift clustering. Experiments with a real multi-fingered robot hand
and bottle caps of different diameters confirm that the proposed method can detect and categorize rotational constraints.
Keywords: Imitation; affordances; manipulation; motion constraint; compliant fingers;
statistical learning.